DOI QR코드

DOI QR Code

Effect of Pt-Sn/Al2O3 catalysts mixed with metal oxides for propane dehydrogenation

프로판 탈수소 반응에 미치는 금속산화물과 혼합된 Pt-Sn/Al2O3 촉매의 영향

  • Jung, Jae Won (Dept. of Biomolecular Chemical Engineering, Hankyong National University) ;
  • Koh, Hyoung Lim (Dept. of Chemical Engineering, Hankyong National University)
  • 정재원 (국립 한경대학교 미래 융합 기술 대학원 화학생물공학전공) ;
  • 고형림 (국립 한경대학교 화학공학과)
  • Received : 2016.05.02
  • Accepted : 2016.06.29
  • Published : 2016.06.30

Abstract

The $Pt-Sn/Al_2O_3$ catalysts mixed with metal oxides for propane dehydrogenation were studied. $Cu-Mn/{\gamma}-Al_2O_3$, $Ni-Mn/{\gamma}-Al_2O_3$, $Cu/{\alpha}-Al_2O_3$ was prepared and mixed with $Pt-Sn/Al_2O_3$ to measure the activity for propane dehydrogenation. As standard sample, $Pt-Sn/Al_2O_3$ catalyst mixed with glassbead was adopted. In the case of catalytic activity test after non-reductive pretreatment of catalyst and metal oxide, $Pt-Sn/Al_2O_3$ mixed with $Cu-Mn/{\gamma}-Al_2O_3$ showed higher conversion of 15% and similar selectivity at $576.5^{\circ}C$, compared to conversion of 8% in standard sample. In the case of catalytic activity test after reductive pretreatment of catalyst and metal oxde, $Cu/{\alpha}-Al_2O_3$ showed higer yield than standard sample. But, increase of yield of most of samples after reductive pretreatment was not significant, so it was found that lattice oxygen of $Cu-Mn/{\gamma}-Al_2O_3$ is effective to propane dehydrogenation.

금속 산화물과 혼합한 $Pt-Sn/Al_2O_3$ 촉매의 프로판 탈수소 반응 성능의 향상 가능성에 대해서 연구하였다. 금속 산화물로서 $Cu-Mn/{\gamma}-Al_2O_3$, $Ni-Mn/{\gamma}-Al_2O_3$, $Cu/{\alpha}-Al_2O_3$를 제조하여 $Pt-Sn/Al_2O_3$ 촉매와 혼합하고, 프로판 탈수소 반응 성능을 측정하였다. 이 결과들을 불활성 물질인 glass bead를 혼합한 $Pt-Sn/Al_2O_3$ 촉매를 기준샘플로 삼아 비교하였다. 촉매와 금속산화물을 환원처리하지 않고 반응 실험한 경우, $576.5^{\circ}C$에서 기준샘플의 전환율 8% 대비, $Cu-Mn/{\gamma}-Al_2O_3$를 혼합한 $Pt-Sn/Al_2O_3$ 촉매가 14.9%의 높은 전환율과 96.8%의 선택도를 보였다. 촉매와 금속산화물을 환원 처리하여 반응활성을 측정한 경우, $Cu/{\alpha}-Al_2O_3$$Pt-Sn/Al_2O_3$의 혼합촉매가 기준샘플대비 초기에 높은 수율을 보였다. 그러나, 촉매를 환원 처리한 경우 전반적으로 전환율 상승이 크지 않았고, 이것으로 $Cu-Mn/{\gamma}-Al_2O_3$의 격자산소가 탈수소반응의 전환율 증가 영향을 주었음을 알 수 있었다.

Keywords

References

  1. H.H. Kung, Oxidative Dehydrogenation of Light (C2 to C4) Alkanes, Advances in Catalysis, 40, 1-38 (1994).
  2. L.M. Madeira, M.F. Portela, Catalytic oxidative dehydrogenation of n-butane, Catal. Rev. -Sci. Eng. 44, 247-286 (2002). https://doi.org/10.1081/CR-120001461
  3. M.M. Bhasin, J.H. McCain, B.V. Vora, T. Imai, P.R. Pujado, Dehydrogenation and oxydehydrogenation of paraffins to olefins, Applied Catalysis A: General, 221, 397-419 (2001). https://doi.org/10.1016/S0926-860X(01)00816-X
  4. S. Bocanegra, A Ballarini, P. Zgolicz, O. Scelza, S. de Miguel, Highly selective and stable bimetallic catalysts supported on different materials for n-butane dehydrogenation, Catalysis Today, 143, 334-340 (2009). https://doi.org/10.1016/j.cattod.2008.10.002
  5. Intrarec. "Technology economics: Propylene via propane dehydrogenation, part III." Intratec Solutions LLC, USA(2013).
  6. Saeed, S., Maryam, T. R., Farnaz, T. Z., Shokoufeh, M., Soheila, R., Kinetic study of propane dehydrogenation and side reactions over Pt-Sn/$Al_2O_3$ catalyst, Chemical Engineering Research and Design, 90(8), 1090-1097 (2012). https://doi.org/10.1016/j.cherd.2011.11.004
  7. Barbier, J.B., Marecot, P., Martin, N., Elassal, L., Maurel, R., Selective poisoning by coke formation on Pt/$Al_2O_3$, Studies in Surface Scidence and Catalysis, 6, 53-62 (1980).
  8. Caravalho, L.S., Reyes, P., Pecchi, G., Figoli, N., Pieck, C.L., Rangel, M.C., Effect of the solvent used during preparation on the properties of Pt/Al2O3 and Pt-Sn/$Al_2O_3$ catalysts, Industrial & Engineering Chemistry Research, 40(23), 5557-5563(2001). https://doi.org/10.1021/ie000939t
  9. Larese, C., Campos-Martin, J.M., Fierro, J.L.G., Alumina- and zirconia-aluminaloaded tin-platinum. Surface features and performance for butane dehydrogenation. Langmuir, 16, 10294-10300(2000). https://doi.org/10.1021/la0009644
  10. Takehira, K., Ohishi, Y., Shishido, T., Kawabata, T., Takaki, K.,Zhang, Q., Wang, Y., Oxidative dehydrogenation of ethane with $CO_2$ over novel Cr/SBA-15/ $Al_2O_3$/Fe-Cr-Al monolithic catalysts, Journal of Catalysis, 224, 404-416(2004). https://doi.org/10.1016/j.jcat.2004.03.014
  11. Waku, T., Biscardi, J.A., Iglesia, E., Active, selective, and stable Pt/Na-[Fe]ZSM5 catalyst for the dehydrogenation of light alkanes, Chemical Communication, 9(14), 1764-1765(2003).
  12. Yu, C., Ge, Q., Xu, H., Li., W., Propane dehydrogenation to propylene over Ptbased catalysts, Catalysis Letters, 112(3), 58-67(2006).
  13. Robert K Grasselli, David L Stern, John G Tsikoyiannis, Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC): II. DH+SHC catalysts physically mixed (redox process mode), Applied Catalysis A : General, 189, 9-14(1999). https://doi.org/10.1016/S0926-860X(99)00195-7
  14. Sujin Gong, Sunyoung Park, Won Choon Chou, Hwimin Seo, Na Young Kang, Myung Wan Han, Yong-Ki Park, Dehydrogenation of butenes over copper oxide supported on alumina under anaerobic conditions : Bifunctionality of the catalyst, Journal of Molecular Catalysis A:Chemical, 391,19-24 (2014). https://doi.org/10.1016/j.molcata.2014.03.028
  15. Hak Beum Lee, Hyoung Lim Koh, CO oxidation Reaction over copper metal oxide catalysts, J. of Korean Oil Chemists' Soc., 33(1), 129-135(2016). https://doi.org/10.12925/jkocs.2016.33.1.129

Cited by

  1. MgAl2O4 지지체를 이용한 Pt-Sn/MgAl2O4의 프로판 탈수소 활성 연구 vol.35, pp.3, 2016, https://doi.org/10.12925/jkocs.2018.35.3.757