DOI QR코드

DOI QR Code

Effect of Coated Polypyrrole Content on the Properties of Polypyrrole Coated Fabrics

폴리피롤 코팅 직물의 성질에 미치는 폴리피롤 함량의 영향

  • Son, Seong-Ho (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Lee, Young-Hee (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Lee, Dong-Jin (Korea Institute of Footwear and Leather Technology) ;
  • Kim, Sung Yeol (School of Mechanical Engineering, Kyungpook National University) ;
  • Kim, Han-Do (Department of Organic Material Science and Engineering, Pusan National University)
  • 손성호 (부산대학교 유기소재시스템공학과) ;
  • 이영희 (부산대학교 유기소재시스템공학과) ;
  • 이동진 (한국신발피혁연구원) ;
  • 김성열 (경북대학교 기계공학부) ;
  • 김한도 (부산대학교 유기소재시스템공학과)
  • Received : 2016.05.23
  • Accepted : 2016.06.22
  • Published : 2016.06.27

Abstract

To chemically prepare polypyrrole(pPy) coated fabrics(silk, cotton and nylon fabrics), the fabrics were first soaked in 0.4M oxidant $FeCl_3$/0.06M dopant anthraquinone-2-sulfonic acid solution for 5min at room temperature, and subsequently soaked in a 0.4M monomer pyrrole aqueous solution for 5min at room temperature. The content(wt%) of coated pPy in the coated fabrics was controlled by the number of treatments(these two steps). This study examined the effect of the number of treatments/pPy content on the sheet resistance, mechanical/bending properties and color behaviors of pPy coated fabrics. The coated pPy content, sheet resistance(${\Omega}$/square) and color strength(K/S) of pPy coated fabrics increased sharply with increasing number of treatments up to 20 times, while the increase slowed down afterward. The tensile strength, elongation at break and lightness($L^*$) decreased with increasing number of treatments. The tensile modulus and bending rigidity of coated fabrics increased significantly with increasing number of treatments/coated pPy content. This indicated that the flexibility of coated fabrics decreased considerably.

Keywords

References

  1. G. A. Snook, P. Kao, and A. S. Best, Conducting-Polymer-Based Supercapacitor Devices and Electrodes, J. Power Sources, 196, 1(2011). https://doi.org/10.1016/j.jpowsour.2010.06.084
  2. R. Ramya, R. Sivasubramanian, and M. V. Sangaranarayanan, Conducting Polymers-Based Electrochemical Supercapacitors-Progress and Prospects,Electrochim. Acta, 101, 109(2013). https://doi.org/10.1016/j.electacta.2012.09.116
  3. L. Pan, H. Qiu, C. Dou, Y. Li, L. Pu, J. Xu, and Y. Shi, Conducting Polymer Nanostructures: Template Synthesis and Applicationsin Energy Storage, Int. J. Mol. Sci., 11, 2636(2010). https://doi.org/10.3390/ijms11072636
  4. B. Kim, V. Koncar, and E. Devaux, Electrical Properties of Conductive Polymers: PET-Nanocomposites Fibers, AUTEX Research J., 4(1), 9(2004).
  5. C. D. Pina, E. Falletta, and M. Rossi, Conductive Materials by Metal Catalyzed Polymerization, Catal. Today, 160, 11(2011). https://doi.org/10.1016/j.cattod.2010.05.023
  6. M. Omastova and M. Micusik, Polypyrrole Coating of Inorganic and Organic Materials by Chemical Oxidative Polymerisation,Chemical Papers, 66, 392(2012).
  7. G. G. Wallace, D. D. Rossi, Y. Wu, K. T. Lau, and S. Coyle, Smart Nanotextiles: A Review of Materials and Applications, MRS Bull., 434, 32(2007).
  8. B. S. Shim, W. Chen, C. Doty, C. Xu, and N. A. Kotov, Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring made by Carbon Nanotube Coating with Polyelectrolytes, Nano Lett., 8(12), 4151(2008). https://doi.org/10.1021/nl801495p
  9. F. Carpi and D. D. Rossi, Electroactive Polymer-Based Devicesfor E-Textilesin Biomedicine,IEEE Trans.Inf. Technol. Biomed., 9(3), 295(2005). https://doi.org/10.1109/TITB.2005.854514
  10. M. Hamedi, R. Forchheimer, and O. Inganas, Towards Woven Logic from Organic Electronic Fibres, Nat. Mater., 6, 357(2007). https://doi.org/10.1038/nmat1884
  11. A. Lymberis and A. Dittmar, Advanced Wearable Health Systems and Applications,IEEE Eng. Med. Biol. Mag., 26(3), 29(2007). https://doi.org/10.1109/MEMB.2007.364926
  12. C. Y. Wang, A. M. Ballantyne, S. B. Hall, C. O. Too, D. L. Officer, and G. G. Wallace, Functionalized Polythiophene-Coated Textile: A New Anode Material for a Flexible Battery, J. Power Sources., 156, 610(2006). https://doi.org/10.1016/j.jpowsour.2005.06.020
  13. S. H. Cho,J. S.Joo, B. R.Jung, T. M. Ha, and J. Y. Lee, PET Fabric/Poly(3,4-ethylenedioxythiophene)Composite as Polymer Electrode in Redox Supercapacitor, Macromol. Res., 17(10), 746(2009). https://doi.org/10.1007/BF03218609
  14. C. Y. Wang, G. Tsekouras, P. Wagner, S. Gambhir, C. O. Too, D. Officer, and G. G. Wallace, Functionalised Polyterthiophenes as Anode Materialsin Polymer/Polymer Batteries, Synth. Met., 160, 76(2010). https://doi.org/10.1016/j.synthmet.2009.10.001
  15. P. Xue, X. M. Tao, and H. Y. Tsang, In Situ SEM Studies on Strain Sensing Mechanisms of PPy-Coated Electrically Conducting Fabrics, Appl. Surf. Sci., 253, 3387 (2007). https://doi.org/10.1016/j.apsusc.2006.07.003
  16. X. Xue, X. M. Tao, M. Y. Leung, and H. Zang, "Wearable Electronics and Photonics", Woodhead Publishing Co., UK, pp.81-104, 2005.
  17. Y. Li, X. Y. Cheng, M. Y. Leung, J. Tsang, X. M. Tao, and M. C. W. Yuen, A Flexible Strain Sensor from Polypyrrole-Coated Fabrics, Synth. Met., 155, 89(2005). https://doi.org/10.1016/j.synthmet.2005.06.008
  18. D. Kincal, A. Kumar, A. D. Child, and J. R. Reynolds, Conductivity Switching in Polypyrrole-Coated Textile Fabrics as Gas Sensors, Synth. Met., 92, 53(1998). https://doi.org/10.1016/S0379-6779(98)80022-2
  19. A. C. Sparavigna, L. Florio, J. Avloni, and A. Henn, Polypyrrole Coated PET Fabrics for Thermal Applications, Materials Sciences and Application, 1, 253(2010). https://doi.org/10.4236/msa.2010.14037
  20. E. Hakansson, A. Kaynak, T. Lin, S. Nahavandi, T. Jones, and E. Hu, Characterization of Conducting Polymer Coated Synthetic Fabrics for Heat Generation, Synth. Met., 144, 21(2004). https://doi.org/10.1016/j.synthmet.2004.01.003
  21. J. Avloni, M. Ouyang, L. Florio, A. R. Henn, and A. C. Sparavigna, Shielding Effectiveness Evaluation of Metallized and Polypyrrole-Coated Fabrics, J. of Thermoplastic Composite Materials, 20, 241(2007). https://doi.org/10.1177/0892705707076718
  22. J. Avloni, R. Lau, M. Ouyang, L. Florio, A. R. Henn, and A. C. Sparavigna, Polypyrrole-coated Nonwovens for Electromagnetic Shielding, J. of Industrial Textiles, 38(1), 55(2008). https://doi.org/10.1177/1528083707087834
  23. H. H. Kuhn, A. D. Child, and W. C. Kimbrell, Toward Real Applications of Conductive Polymers, Synth. Met., 71, 2139(1995). https://doi.org/10.1016/0379-6779(94)03198-F
  24. A. Kaynak, Aging Studies on Conducting Polypyrrole, Fibers and Polymers, 2(4), 171(2001). https://doi.org/10.1007/BF02875341
  25. K. Kukkonen, T. Vuorela,J.Rantanen, O.Ryynanen, A. Siili, and J. Vanhala, The Design and Implementation of Electrically Heated Clothing, Proceedings of the International Symposium on Wearable Computers, p.180, 2001.
  26. S. Y. Kim, J. K. Hong, and G. T. R. Palmore, Polypyrrole Decorated Cellulose for Energy Storage Applications, Synth. Met., 162, 1478(2012). https://doi.org/10.1016/j.synthmet.2012.06.003

Cited by

  1. Conductivity, superhydrophobicity and mechanical properties of cotton fabric treated with polypyrrole by in-situ polymerization using the binary oxidants ammonium Peroxodisulfate and ferric chloride pp.1746-7748, 2019, https://doi.org/10.1177/0040517518792732