DOI QR코드

DOI QR Code

Parametric Study on the tendency of Stiffness Variation using Variable Stiffness Mechanism

변수변화에 따른 가변강성 메커니즘의 강성변화 경향성에 관한 연구

  • Ham, KiBeom (School of Mechanical Engineering, SunMoon University) ;
  • Han, Jiho (Department of Electronic Engineering, SunMoon University) ;
  • Jeon, JongKyun (School of Mechanical Engineering, SunMoon University) ;
  • Park, YongJai (School of Mechanical Engineering, SunMoon University)
  • 함기범 (선문대학교 기계공학과) ;
  • 한지호 (선문대학교 전자공학과) ;
  • 전종균 (선문대학교 기계공학과) ;
  • 박용재 (선문대학교 기계공학과)
  • Received : 2016.03.15
  • Accepted : 2016.06.02
  • Published : 2016.06.30

Abstract

In general, a system can be stable when it is designed with a rigid material. However, the use of a rigid system can be limited, such as grasping a glass or using a small surgical instrument. To resolve this limitation, a variable stiffness mechanism was developed using a flexible material. Previous research verified the variable stiffness mechanism where flexible segments and rigid segments were connected alternately in series. However, research into the design parameters of the variable stiffness structure is needed to satisfy the desired stiffness. Therefore, a variable stiffness structure was tested by varying the design parameters to confirm the trend of the stiffness variation. When the radius of the structure becomes larger, the stiffness increases. The stiffness increased with decreasing length of the flexible segments. Under the same design parameters, the length of the flexible segments had a greater effect on the stiffness than the length of the rigid segments. In addition, the stiffness was estimated using the pseudo rigid body model and was compared with the experimental results. This parametric study can be used as a design guideline for designing the variable stiffness mechanism to satisfy the desired stiffness.

일반적으로 시스템을 강성체로 설계할 경우 시스템의 구조적 안정성을 확보할 수 있으나 유리잔을 잡거나 작은 수술용 도구로 사용하는 등의 사용용도에 따라 활용성이 제한될 수 있다. 이러한 문제를 해결하기 위하여 유연한 재질을 사용하여 강성조절이 가능한 메커니즘에 대한 연구가 다양하게 이루어져 왔다. 기존에 연구했던 강성체와 연성체의 연속구조로 이루어진 모델에 텐던을 삽입한 구조를 이용한 가변강성 메커니즘을 통하여 가변강성 구조체에 대한 가능성을 확인하였다. 그러나 필요로 하는 가변강성을 충족하기 위한 구조체의 설계 변수에 대한 연구가 필요하였다. 따라서 본 연구에서는 가변강성 메커니즘의 다양한 변수 변화에 따른 강성변화 실험을 통해 강성의 경향성을 파악하고자 하였다. 실험 결과 지름이 클수록 강성은 증가하며 강성의 증가폭 또한 늘어난다. 또한 연성체 길이가 짧을수록 강성이 증가하며 텐던을 당겨 연성체를 압착할 경우 강성값은 비선형적으로 증가하였다. 동일 조건에서 연성체 길이변화에 따른 강성 증가폭과 강성체의 길이 변화에 따른 강성 증가폭을 비교하였을 때 연성체 길이 변화가 강성체 길이 변화 보다 강성값 변화에 영향을 미친다는 것을 확인하였다. 또한, 해석값이 실험값에 비하여 정확성은 낮지만, 가변강성의 경향성을 확인하기 위하여 해석적인 방법을 통한 강성을 예측해보았다. 이러한 변수변화 실험 결과는 필요로 하는 강성값을 충족하는 가변강성 메커니즘 설계에 활용할 수 있을 것이다.

Keywords

References

  1. A. M. Dollar and R. D. Howe, "The Highly Adaptive SDM Hand: Design and Performance Evaluation," The International Journal of Robotics Research, vol. 29, no. 5, pp. 585-597, Apr. 2010. DOI: http://dx.doi.org/10.1177/0278364909360852
  2. M. Zoppi, R. Molfino, and P. Cerveri, "Modular micro robotic instruments for transluminal endoscopic robotic surgery: New perspectives," IEEE/ASME Int. Conf. on Mechatronics and Embedded Systems and Applications (MESA), pp. 440-445, 2010. DOI: http://dx.doi.org/10.1109/mesa.2010.5551996
  3. Y. J. Park, U. S. Jeong, J. S. Lee, S. R. Kwon, H. Y. Kim, and K. J. Cho, "Kinematic Condition for Maximizing the Thrust of a Robotic Fish Using a Compliant Caudal Fin," IEEE Transactions on Robotics, vol. 28, no. 6, pp. 1216-1227, 2012. DOI: http://dx.doi.org/10.1109/TRO.2012.2205490
  4. S. Kawamura, T. Yamamoto, D. Ishida, T. Ogata, Y. Nakayama, O. Tabata, and S. Sugiyama, "Development of passive elements with variable mechanical impedance for wearable robots," IEEE Int. Conf. on Robotics and Automation, vol. 1, pp. 248-253, 2002. DOI: http://dx.doi.org/10.1109/robot.2002.1013369
  5. Y. J. Kim, S. Cheng, S. Kim, and K. Iagnemma, "A Novel Layer Jamming Mechanism With Tunable Stiffness Capability for Minimally Invasive Surgery," IEEE Transactions on Robotics, vol. 29, no. 4, pp. 1031-1042, 2013. DOI: http://dx.doi.org/10.1109/TRO.2013.2256313
  6. T. Mitsuda, S. Kuge, M. Wakabayashi, and S. Kawamura, "Haptic displays implemented by controllable passive elements," IEEE Int. Conf. on Robotics and Automation, vol. 4, pp. 4223-4228, 2002 DOI: http://dx.doi.org/10.1109/robot.2002.1014417
  7. T. M. Huh, Y. J. Park, and K. J. Cho, "Design and analysis of a stiffness adjustable structure using an endoskeleton," Int. J. Precis. Eng. Manuf., vol. 13, no. 7, pp. 1255-1258, Jul. 2012. DOI: http://dx.doi.org/10.1007/s12541-012-0168-2
  8. L. Howell, "Compliant mechanisms," Wiley-IEEE, 2001.
  9. M. S. Chalhoub, and J. M. Kelly, "Effect of bulk compressibility on the stiffness of cylindrical base isolation bearings," Int. J. of Solids and Structures, vol. 26, no. 7, pp. 743-760, 1990. DOI: http://dx.doi.org/10.1016/0020-7683(90)90004-F

Cited by

  1. Soft Gripper using Variable Stiffness Mechanism and Its Application vol.19, pp.4, 2018, https://doi.org/10.1007/s12541-018-0059-2