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Abstract: A fin of finite width with infinitely small thickness is assumed to be placed horizontally between two horizontal parallel 

plates of infinite extension in the exactly central position. The lower plate and the half of the upper plate are kept at a constant lower 

temperature, and the remaining upper plate is kept at a constant higher temperature. The fin is also kept at a constant temperature 

(variable). Steady-state two-dimensional laminar natural convection is analyzed as a problem of boundary value under a boundary-

fitted conformal mapping system, using a spectral finite difference scheme, with a condition of doubly-connectedness. The steady-

state solution is obtained as a limit of the transient solution. 
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Nomenclature 
Gr : Grashof number based on the length L and temperature 

difference ∆T (> 0) ≡ temperature at the right half of the 

upper plate minus that at the left half. 

k : Numerical parameter 

L : Reference length ≡ the distance between the upper 

and lower plates 

Num : Mean Nusselt number 

Pr : Prandtl number 

T : Dimensionless temperature ≡ (local temperature 

minus the temperature at the left half of the upper 

plates) / ∆T 

x : Cartesian coordinate (horizontal) 

y : Cartesian coordinate (vertical) 
 

Subscripts 
𝛼𝛼 : Mapping coordinate 

𝛽𝛽 : Conformal mapping coordinate 

𝜁𝜁 : Dimensionless vorticity 

𝜌𝜌 : Density 

𝜓𝜓 : Dimensionless stream function 

𝑓𝑓 : Fin surface 
 

1. Introduction  
The numerical estimation of natural convection from a fin is an 

element of heat transfer problems. Basically, two-dimensional 

analysis is fundamental. Furthermore, if the introduction of a 

boundary-fitted coordinate system under the conformal mapping is 

possible, then this problem is reduced simply to a boundary-value 

problem, very similar to a Cartesian coordinate system, resulting in 

possibility of spectral decomposition [1]. Many theories and 

applications on conformal mapping have been presented in the past 

[2]-[5]. 

Among many numerical schemes for heat and fluid flow analysis, 

the spectral finite difference scheme using the conformal mapping 

[1] is very effective, although the special attention is required in a 

multiply-connection region [6], which is the case described in this 

paper. This spectral finite difference scheme has a good resolution 

in space and a high computation speed. Also, this scheme can 

cover various problems associated with infinite extension [7] and 

support the mixed types of boundary conditions [1][8]. From the 

viewpoint of experimental work, the heat transfer from fins in 

plane layers is treated by authors of references [9]-[13]. 

The spectral finite difference scheme developed by one of 

authors earlier [1][14] has the following features. For a coordinate 

system under analysis, the boundary-fitted-coordinate system using 

the conformal mapping is adopted, where all the boundaries in a 

two-dimensional problem, including infinity, if any, constitute a 

part or whole of one or two coordinate surfaces for the same 

component of one independent variable so that it can be reduced to 

a boundary-value problem (at least Dirichlet type, Neumann type, 

or mixed type [8]). If a part does not correspond to a physical 
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boundary, it is necessary to introduce additional conditions such as 

continuity of scalars. Generally, such a conformal mapping is not 

necessarily unique, and a sufficient method to apply it for any 

configuration is not yet known.  

Secondly, Fourier series is frequently used for the spectral 

decomposition of dependent variables, but is not restricted. In 

some cases, analytical solutions (at least first two terms [7] 

and asymptotic solution [15]) are obtained without any aid of finite 

difference approximation. 

Thirdly, the condition of multiply-connectedness is 

exactly introduced in a mathematical point of view [1]/[14][15]; 

such a condition is not in the conventional FEM (Finite element 

method) and FDM (finite difference method). Decomposition of 

the governing equations exactly depends on mathematical 

theorems (usually depending on necessary and sufficient 

conditions), which does not introduce errors. Nevertheless, it is 

assumed that higher components decay faster, which means that 

the conditional convergence of series is not adequate for numerical 

solutions. The conventional FEM and FDM produce error(s) in 

formulation unless polynomial solutions are 

expected. Experimental values may be sensitive to conditions, not 

expressed explicitly, which can be covered by the present method 

in some cases [16]. 

Authors have been performing several works on natural 

convection heat transfer [17]-[19]. In this study, the numerical 

analysis of two-dimensional laminar natural convection heat 

transfer from a fin in the parallel enclosure is carried out by a 

spectral finite difference scheme. 
 

2. Analysis 
2.1 Configuration 

Two-dimensional laminar natural convection in a vertical plane is 

considered in this study. Fluid is assumed to be enclosed between two 

horizontal parallel plates (CE and C’E’) of infinite extension equipped 

with a horizontal finite length fin(infinitesimally small thickness, upper 

surface OA, lower surface OA’) exactly in the middle of the plates as 

shown in Figure 1. 
 

 
Figure 1: Schematic configuration 

The boundary-fitted conformal mapping coordinate system 

(𝛼𝛼,𝛽𝛽) is introduced such that 
 

𝑥𝑥 + 𝑖𝑖𝑖𝑖 = − 1
2𝜋𝜋

ln �1 + (1 − 𝑘𝑘2) tanh2  𝛼𝛼+𝑖𝑖𝑖𝑖
2
�              (1) 

 
−∞ < 𝛼𝛼 ≤ 0,−|𝛽𝛽| ≤ 𝜋𝜋,−0 < 𝑘𝑘 < 1 

 

where (x, y) is a dimensionless Cartesian coordinate system 

with vertically upward y. In this system, the reference length, L, 

is given by the distance between two parallel plates, i.e., the 

upper and lower plates are given by 𝑖𝑖 = 0.5 and 𝑖𝑖 = −0.5 

respectively. It is assumed that the point (𝛼𝛼,𝛽𝛽 ) = (0, 0) 

corresponds to point O, and (𝛼𝛼,𝛽𝛽) = (0, 𝜋𝜋/2) to point A. 

Consequently, the upper plate is designated by 𝛼𝛼 = 0, 

2 tan−1(1/√1 − 𝑘𝑘2) < 𝛽𝛽  < 𝜋𝜋, the lower plate by 𝛼𝛼  = 0, 

−𝜋𝜋  < 𝛽𝛽  < −2  tan−1(1/√1 − 𝑘𝑘2)  and the fin by 𝛼𝛼  = 0, 

−𝜋𝜋/2 ≤ 𝛽𝛽 ≤ 𝜋𝜋/2. The centerline AB (or A’B’) corresponds to 

𝛼𝛼  = 0, 𝜋𝜋 /2 < |𝛽𝛽|  < 2  tan−1(1/√1 − 𝑘𝑘2) . The system of 

governing equations for substantially incompressible 

Newtonian fluids under a Boussinesq approximation consists of 

the equation of vorticity transport, the relationship between 

vorticity 𝜁𝜁 and stream function 𝜓𝜓, and energy equation: 
 

 

𝐽𝐽
𝑟𝑟2
𝜕𝜕𝜁𝜁
∂𝑡𝑡

+
1
𝑟𝑟
∂(𝜁𝜁,𝜓𝜓)
∂(𝑟𝑟,𝛽𝛽) =  

   
1
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∂𝑇𝑇
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1
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∂𝑟𝑟 +
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𝑟𝑟2
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       𝐽𝐽 ≡  
∂(𝑥𝑥,𝑖𝑖)
∂(𝛼𝛼,𝛽𝛽) , 𝑟𝑟                  

≡ e𝛼𝛼                                                                                                     (4) 
 

Through Equation (1): 

 

�𝐽𝐽
𝑟𝑟 =

(1 − 𝑘𝑘2)e−𝛼𝛼

2𝜋𝜋 = 

 × �
tanh(𝛼𝛼 + 𝑖𝑖𝛽𝛽)

2
cosh2(𝛼𝛼 + 𝑖𝑖𝛽𝛽)

2 + (1 − 𝑘𝑘2)sinh2(𝛼𝛼 + 𝑖𝑖𝛽𝛽)
2

�                        (5) 

 

2.2 Physical boundary conditions 
The following fully Dirichlet type thermal boundary 

conditions (not producing stratification) are introduced: along 

the lower plate T = 0, along the left part of upper plate (DE) T 
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= 0, and along the right part of upper plate (CD) T =1, and 

along the fin (both sides) T = TC (0 < TC < 1). As a dynamical 

boundary condition, no-slip flows on the plates and on the fin 

surfaces are assumed ; i.e., without loss of generality, 𝜓𝜓 = 0 

along the upper and lower plates, 𝜓𝜓  = c (constant to be 

determined) along the fin surface, and ∂𝜓𝜓
∂𝛼𝛼

 = 0 along the plates 

and the fin surfaces. 

2.3 Mathematical boundary conditions Mathematical 

boundary conditions along 𝜶𝜶 = 0, 𝝅𝝅/2 < |𝜷𝜷| < 

2 𝐭𝐭𝐭𝐭𝐭𝐭−𝟏𝟏(𝟏𝟏/√𝟏𝟏 − 𝒌𝒌𝟐𝟐) 
Under Equation (1), the continuity of scalar quantity 

ϕ(α, β) at the both sides of center line (AB, A’B’) and the 

continuity of gradient vector for the scalar quantity ϕ(α, β) are 

given by 
 

 𝜙𝜙(0,𝛽𝛽) = 𝜙𝜙(0,−𝛽𝛽)                                                                       (6) 

  
𝜕𝜕
𝜕𝜕𝛼𝛼

𝜙𝜙(0,𝛽𝛽)

= −
𝜕𝜕
𝜕𝜕𝛼𝛼

𝜙𝜙(0,−𝛽𝛽) ,                                                    (7) 

 

which applies for 𝜓𝜓, 𝜁𝜁, and T. 

2.4 Mathematical boundary conditions at r = 0( 𝛂𝛂 = -∞) 
At the single point given by r = 0, any scalar quantity and its 

gradient are independent of β, which is a necessary condition. 

2.5 Conditions of doubly-connectedness 
The condition for the region of doubly-connectedness is 

given by 

  �
𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽

 

𝑓𝑓
𝑑𝑑𝛽𝛽 = 0                                                                                  (8) 

where p stands for pressure and f for integration around the fin. 

Equation (8) leads to  
 

 

 
1
√𝐺𝐺𝑟𝑟

�
𝜕𝜕𝜁𝜁
𝜕𝜕𝛼𝛼

 

𝑓𝑓
𝑑𝑑𝛽𝛽 + � 𝑇𝑇

𝜕𝜕𝑖𝑖
𝜕𝜕𝛽𝛽

 

𝑓𝑓
𝑑𝑑𝛽𝛽 = 0                                               (9) 

 

Under the given thermal boundary condition, Equation (9) 

becomes 
 

   �
𝜕𝜕𝜁𝜁
𝜕𝜕𝛼𝛼

 

𝑓𝑓
𝑑𝑑𝛽𝛽 = 0                                                                              (10) 

 

2.6 Spectral decomposition of the unknowns 
Among many possibilities of complete sets, Fourier series 

expansion is applied; that is: 

     � 
𝜓𝜓(𝑟𝑟,𝛽𝛽, 𝑡𝑡)
𝜁𝜁(𝑟𝑟,𝛽𝛽, 𝑡𝑡)
𝑇𝑇(𝑟𝑟,𝛽𝛽, 𝑡𝑡)

 � =  �� 
𝜓𝜓𝑠𝑠𝑠𝑠(𝑟𝑟, 𝑡𝑡)
𝜁𝜁𝑠𝑠𝑠𝑠(𝑟𝑟, 𝑡𝑡)
𝑇𝑇𝑠𝑠𝑠𝑠(𝑟𝑟, 𝑡𝑡)

 �
∞

𝑠𝑠=1

𝑠𝑠𝑖𝑖𝑠𝑠 𝑠𝑠𝛽𝛽 

 

     + �� 
𝜓𝜓𝑐𝑐𝑠𝑠(𝑟𝑟, 𝑡𝑡)
𝜁𝜁𝑐𝑐𝑠𝑠(𝑟𝑟, 𝑡𝑡)
𝑇𝑇𝑐𝑐𝑠𝑠(𝑟𝑟, 𝑡𝑡)

 �
∞

𝑠𝑠=0

𝑐𝑐𝑐𝑐𝑠𝑠 𝑠𝑠𝛽𝛽                                                      (11) 

 

The mathematical boundary conditions (6) and (7) for the 

arguments in Equation (11) become 
 

    𝜓𝜓(1,𝛽𝛽, 𝑡𝑡) + 𝜓𝜓(1,−𝛽𝛽, 𝑡𝑡) 
 
     = 𝜁𝜁(1,𝛽𝛽, 𝑡𝑡) + 𝜁𝜁(1,−𝛽𝛽, 𝑡𝑡)                                                             
 
     = 𝑇𝑇(1,𝛽𝛽, 𝑡𝑡) + 𝑇𝑇(1,−𝛽𝛽, 𝑡𝑡) = 0                                          (12) 
 

     
𝜕𝜕
𝜕𝜕𝑟𝑟

{𝜓𝜓(1,𝛽𝛽, 𝑡𝑡)} + {𝜓𝜓(1,−𝛽𝛽, 𝑡𝑡)} 
 

     =
𝜕𝜕
𝜕𝜕𝑟𝑟

{𝜁𝜁(1,𝛽𝛽, 𝑡𝑡)} + {𝜁𝜁(1,−𝛽𝛽, 𝑡𝑡)} 
 

     =
𝜕𝜕
𝜕𝜕𝑟𝑟

{𝑇𝑇(1,𝛽𝛽, 𝑡𝑡)} + {𝑇𝑇(1,−𝛽𝛽, 𝑡𝑡)} = 0                                (13) 
 

if 𝜋𝜋/2 < |𝛽𝛽| < 2 tan−1(1/√1 − 𝑘𝑘2). Equations (12) and 

(13) mean that the odd components of 𝜓𝜓, 𝜁𝜁 and T at r = 1 

become 0 in the described interval, and that the derivative (with 

respect to r) for the even components of 𝜓𝜓, 𝜁𝜁 and T at r = 1 

also become 0 in the described interval. Thus, the mixed 

boundary conditions at r = 1 can be split into Fourier 

components in the similar way as references in [1] and [8]. The 

boundary condition at r = 0 is given as a necessary condition. 
 

     𝜓𝜓𝑠𝑠𝑠𝑠(0, 𝑡𝑡) = 𝜁𝜁𝑠𝑠𝑠𝑠(0, 𝑡𝑡) = 𝑇𝑇𝑠𝑠𝑠𝑠(0, 𝑡𝑡) = 0  (𝑠𝑠 ≥ 1)                (14) 
 

 

     𝜓𝜓𝑐𝑐𝑠𝑠(0, 𝑡𝑡) = 𝜁𝜁𝑐𝑐𝑠𝑠(0, 𝑡𝑡) = 𝑇𝑇𝑐𝑐𝑠𝑠(0, 𝑡𝑡) = 0  (𝑠𝑠 ≥ 1)               (15) 
 

    
𝜕𝜕
𝜕𝜕𝑟𝑟𝜓𝜓𝑐𝑐0

(0, 𝑡𝑡) =
𝜕𝜕
𝜕𝜕𝑟𝑟 𝜁𝜁𝑐𝑐0

(0, 𝑡𝑡) =
𝜕𝜕
𝜕𝜕𝑟𝑟 𝑇𝑇𝑐𝑐0

(0, 𝑡𝑡) = 0                 (16) 
 
 

The constant c (to be determined) can be included in 

Equation (10), noting that J = 0 if α = β = 0. 

2.7 Numerical integration of the governing Equations 
The system of Equations (2) - (4) can be split into each 

Fourier component, supplemented with the decomposed 

boundary conditions at r = 1 and r = 0. Spatial and time 

derivatives can be replaced by finite difference approximation 

(nonuniform grid spacing can be accepted), which can be semi-

implicitly integrated with respect to time, using a suitably 

given initial thermal and fluid flow field to get a steady-state 

solution. Since the temperature on the fin surface is uniform, 
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the total dimensionless force F (based on 𝜌𝜌𝑈𝑈2𝐿𝐿 , 𝑈𝑈  ≡ 

√𝐺𝐺𝑟𝑟 𝜈𝜈/L, 𝜈𝜈 ; kinematic viscosity) acting on the fin (z ≡ x + iy) 

becomes 
 

  −𝑭𝑭 =
𝑖𝑖

√𝐺𝐺𝑟𝑟
�𝑧𝑧′

 

𝑓𝑓
𝜁𝜁𝑑𝑑𝛽𝛽 −

𝑖𝑖
√𝐺𝐺𝑟𝑟

�𝑧𝑧
 

𝑓𝑓

𝜕𝜕𝜁𝜁
𝜕𝜕𝛼𝛼 𝑑𝑑𝛽𝛽                                  (17) 

 

The mean Nusselt number on the fin surface, N𝑢𝑢𝑚𝑚 , is given by 
 

𝑁𝑁𝑢𝑢𝑚𝑚 =  ∮ 𝜕𝜕𝜕𝜕
𝜕𝜕𝛼𝛼

 
𝑓𝑓 𝑑𝑑𝛽𝛽 ∮ �𝐽𝐽 

𝑓𝑓 𝑑𝑑𝛽𝛽�                                                    (18)  

 

In this problem, the Dirichlet thermal boundary condition is 

assumed. Thus if N𝑢𝑢𝑚𝑚 > 0 is positive, the heat is emitted 

outward from the fin as a heat source, and if N𝑢𝑢𝑚𝑚 < 0 is 

negative, the heat is  absorbed inward to the fin, as a heat sink. 

Consequently, at −∞ < 𝛼𝛼 ≤ 0 , if ∂𝜕𝜕
∂α

> 0, the heat flux is 

outward and if  ∂𝜕𝜕
∂α

< 0, the heat flux is inward. 

 
3. Numerical results and discussion 

Figures 2 and 3 show streamlines and isotherms at √1 − 𝑘𝑘2 

= 0.9, 𝑇𝑇𝑐𝑐 = 0.35, Gr = 10, and Pr = 0.7 (fin width = 0.264) 

respectively, where the characteristic values are N𝑢𝑢𝑚𝑚 = 0.32, 

F = 0.070i, and c = −0.0075. c < 0 presents clockwise 

circulation. For not a sufficiently large Grashof number, Gr, the 

characteristic values are nearly insensitive to Pr. Figures 4 and 

5 show streamlines and isotherm at √1 − k2 = 0.8, Tc = 0.35, 

Gr = 10, and Pr = 0.7 (fin width = 0.163) respectively, where 

the characteristic values are N𝑢𝑢𝑚𝑚 = 0.49, F = 0.398i, and c = 

−0.028. Figure 6 shows isotherms at √1 − k2 = 0.9, 𝑇𝑇𝑐𝑐 = 

0.15, Gr = 10, and Pr = 0.7, where the characteristic value are 

N𝑢𝑢𝑚𝑚 = −0.52, F = 0.039i, and c = −0.043. 

 

 
Figure 2 : Streamlines at √1 − k2 = 0.9, Tc = 0.35, Gr = 10, 

Pr = 0.7 and δψ = −0.001 

 
Figure 3 : Isotherms at √1 − k2 = 0.9, 𝑇𝑇𝑐𝑐 = 0.35, Gr = 
10 and Pr = 0.7 
 

 
Figure 4 : Streamlines at √1 − k2 = 0.8, 𝑇𝑇𝑐𝑐 = 0.35, Gr = 10, 

Pr = 0.7 and 𝛿𝛿𝜓𝜓 = −0.005 
 

 
Figure 5 : Isotherms at √1 − k2 = 0.8, 𝑇𝑇𝑐𝑐 = 0.35, Gr = 10 

and Pr = 0.7 
 

 
Figure 6 : Isotherms at √1 − 𝑘𝑘2 = 0.9, 𝑇𝑇𝑐𝑐 = 0.15, Gr = 10 

and Pr = 0.7 
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Undisturbed (without any fin) pure conduction temperature 

distribution is given by 
 

        𝑇𝑇 = �
1

(2𝑠𝑠 + 1)𝜋𝜋 e(2𝑠𝑠+1)𝛼𝛼∗
∞

𝑠𝑠=0

× sin(2𝑠𝑠 + 1)𝛽𝛽∗ 

 

       −�
1

(2𝑠𝑠 + 1)𝜋𝜋 e(4𝑠𝑠+2)𝛼𝛼∗
∞

𝑠𝑠=0

× sin(4𝑠𝑠 + 2)𝛽𝛽∗ 

 

       −�
(−1)𝑠𝑠

(2𝑠𝑠 + 1)𝜋𝜋 e(2𝑠𝑠+1)𝛼𝛼∗
∞

𝑠𝑠=0

× cos(2𝑠𝑠 + 1)𝛽𝛽∗ +
1
4        (19) 

 

        𝛼𝛼∗ + 𝑖𝑖𝛽𝛽∗ ≡ ln �tan �𝑖𝑖
𝜋𝜋
2 (𝑥𝑥 + 𝑖𝑖𝑖𝑖)��                                   (20) 

 

which shows that Tc at O is 0.25. Thus, as long as √1 − k2 

is not very near unity, the fin would behave as a heat source if 

Tc > 0.25, and as a heat sink if Tc < 0.25, which is coincident 

with Figures 3 and 6. 
 

4. Conclusions 
Natural convention heat transfer from a two-dimensional fin 

in the parallel enclosure was successfully analyzed, using a 

spectral finite difference scheme, supplemented with a 

condition of doubly-connectedness of the domain. The 

enclosure plates were placed horizontally and kept at constant 

temperatures. Problems were treated as a boundary-value 

problem, and variables were exactly decomposed into Fourier 

components. To get a steady-state solution, a time-marching 

scheme was applied. Depending on the uniform surface 

temperature of fin, the fin behaved as a heat source or sink. 
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