
Journal of Korea Multimedia Society Vol. 19, No. 7, July 2016(pp. 1154-1158)

http://dx.doi.org/10.9717/kmms.2016.19.7.1154

1. INTRODUCTION

The Scale Invariant Feature Transform, or SIFT

algorithm, has rapidly been adopted in the machine

vision community as the “best-in-class” standard

for feature detection and matching. Feature de-

tection has a variety of applications in image proc-

essing across many domains, from object recog-

nition and tracking in robotics to create photo mo-

saics in consumer photography applications [1].

However, since SIFT algorithm involves an in-

tensive time-consuming module, the Gaussian

pyramid [2], current SIFT software implementa-

tions typically involve the use of a high power,

general-purpose processor to achieve less-than-

real-time performance. However, for many em-

bedded applications, this is an unacceptable sol-

ution. A computing power of embedded processors

is much less powerful than that of desktop or lap-

top computers. In addition, almost of current em-

bedded processors do not have hardware support-

ing floating point computation in order to reduce

power consumption and chip size [3]. With a hard-

ware implementation of the Gaussian pyramid, the

full power of the SIFT algorithm could be available

to mobile sensing platforms without the overhead

of a separate, high power processor [1].

A few hardware implementations [1, 4, 5, 6, 7]

were proposed for constructing image pyramids. In

[1], they implemented the hardware for generating

a variation of Gaussian pyramid. However, the im-

plemented hardware accepts fixed sized images so

that it can be applied to various applications. In [4],

they implemented image pyramid generation unit

(IPGU) as a part of face detection hardware.

However, since it only performed size reductions

without convolution operations, the aliasing prob-

lem can be occurred. In [5], they implemented the

hardware that generates 2-levels pyramid. In [6],

they implemented pipeline schemed hardware for

construction of the Gaussian pyramid. In [7], they

designed the 3-levels pyramid generation hard-

ware embedded into their stereo matching hard-

ware system.

Although many implementations were proposed,

they have common problems to be used for embed-

ding various applications. For embedding into var-

ious devices, the hardware implementation has a

Design and Implementation of Image-Pyramid

Bongkyu Lee†

ABSTRACT

This paper presents a System-On-a-chip for embedded image processing applications that need

Gaussian Pyramid structure. The system is fully implemented into Field-Programmable Gate Array

(FPGA) based on the prototyping platform. The SoC consists of embedded processor core and a hardware

accelerator for Gaussian Pyramid construction. The performance of the implementation is benchmarked

against software implementations on different platforms.

Key words: Image Pyramid, Multi-resolution, Visual System, Gaussian Pyramid

※ Corresponding Author : Bongkyu Lee, Address: (690-

756) Jejudaehak-ro 120, Jeju-si, Jeju-Do, TEL : +82-64-

754-3593, FAX : +82-64-725-2579, E-mail : bklee@jeju-

nu.ac.kr

Receipt date : May 9, 2016, Revision date : June 4, 2016

Approval date : July 11, 2016
†Dept. of Computer&Statistics, Jeju National University

※ This research was supported by the 2015 scientific

promotion program funded by Jeju National University



1155Design and Implementation of Image-Pyramid

component for connecting to processors, memory

systems and even external devices embedded into

applications. Second, it is needed to accept various

sized images, since cameras attached to mobile

sensing devices have several resolutions, such as

320×240, 640×480 or 160×120. Finally it is also

needed that the Gaussian pyramid supports differ-

ent levels of pyramids according to the applications.

In this paper, we describe the design and im-

plementation of a Gaussian pyramid processor for

various embedded image processing applications.

The implementation steps are as follow. First, we

designed and implemented the prototyping plat-

form based on a Field Programmable Gate Array

(FPGA). The platform was used for testing and

debugging the target SoC architecture in the regis-

ter transfer level. We evaluated the performance

of the implemented SoC in the register transfer

level using the platform.

The remainder of the paper is as follows. In

Section II, we review the computation process of

Gaussian pyramid. Section III explains the pro-

posed Gaussian pyramid processor. The emulation

result is presented in Section IV, and final dis-

cussions are given in Section V.

2. THE GAUSSIAN PYRAMID 

Gaussian pyramid consists of reduced copies of

an image, where the size of an image decreases

in a factor s from one level to the next, and a

low-pass filter is convolved with level for avoiding

aliasing problems [8]. Gaussian pyramid con-

struction can be described as follows. Suppose the

image is represented initially by the array  which

contains C column and R rows of pixel. Pyramid

level 1 contains image  which is reduced and

low-pass filtered version of  . The level-to-level

computation is performed by the function REDUCE

[8].

     (1)

which means, for levels      and pixels

 ≤    ≤   ,

  
  



  




  



  



   (2)

N refers to the number of levels in the pyramid,

M is the length of the kernel window and w is the

pattern of weights which resemble the Gaussian

probability density functions, while  and  are

dimensions of the  level. The shape of a graphical

representation of this process is given in Fig. 1.

Fig. 1. Iterative pyramid generation.

3. THE GAUSSIAN PYRAMID PROCESSOR

3.1 The prototyping emulation platform

SoC design is the trend for the development of

embedded systems [9]. To design and verification

of SoC, FPGA-based emulation platform has be-

come popular in co-verification and rapid proto-

typing [10]. Mapping the entire design of the target

SoC into an FPGA gives an accurate and fast

representation.

For the prototyping platform based on a FPGA,

the basic components, - including CPU, several

system buses and associated interconnection

blocks, - were selected according to the design

steps. We used LENO2 (32-bit RISC processor)

and its related Floating Point Unit (FPU) for base

processors. Register transfer level modules of pro-

cessors were implemented into the FPGA (XILINX

X2CV8000). The operational clock rate of process-

ors was 30MHZ. For acquisition of images, a

MICRON MT9V112 image sensor was connected

to the emulation platform using an I2C bus which

was implemented in the FPGA.

The emulation platform has the SDRAM-based

memory (128 Mbytes, SAMSUNG 16bits × 2) and



1156 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 19, NO. 7, JULY 2016

the Flash-based storage (8 Mbytes, INTEL STRATA

16bits × 2). SDRAM-based memory unit is used

for storing images captured by the image sensor,

while Flash-based storage is used for storing co-

des (program) and data. Fig. 2 shows the im-

plemented emulation platform with compact size of

112×129 mm. We designed small interactive boot-

strap program for operating the emulation platform.

Fig. 3 shows the flow of the bootstrap program.

By using this program, the overhead of operational

software was greatly reduced.

Fig. 2. The prototyping emulation platform.

Fig. 3. The monitor program.

3.2 Pyramid reduction filter block

Our goal in implementing Gaussian pyramid

processor is to create an architecture that is flexi-

ble enough to be implementable in hardware using

FPGA [10, 11]. Fig. 4 shows the top level block

description of the Gaussian pyramid processor.

The pyramid reduction filer block is the heart of

the Gaussian pyramid processor. In addition to the

pyramid filer unit, additional control units, Direct

Memory Access (DMA) unit, DMA FIFO buffers

and working memories were implemented for the

target Gaussian pyramid processor.

Fig. 5 shows the register transfer level archi-

tecture and the data-flow path of the pyramid re-

duction filter block. To take advantage of the prop-

erty of separation for the two-dimensional con-

volution, the pyramid reduction filter was im-

plemented by two one-dimensional filters, hori-

zontal and vertical filer. A 3-taps filter was used

for convolution (low-pass filtering). Fig. 6 shows

the internal architecture of the implemented pyr-

amid reduction filter.

The source DMA block retrieves each of 16 pix-

els of stored image into input-FIFO- buffer using

DMA. Using pixels in the input-FIFO-buffer, the

pyramid reduction filter block performs first the

horizontal convolution and decimation, and saves

the result pixels into the line memory ‘A’. Then the

vertical convolution is performed with pixels in the

line memory ‘A’ and saves the result into the line

memory ‘B’. Pixels in the line memory ‘B” is finally

decimated vertically and transferred into the out-

put-FIFO–buffer. Final result is transmitted back

to SRAM-based memory via DMA. The source

Fig. 4. The block diagram of the GPP.

Fig. 5. Architectural overview of the processor.



1157Design and Implementation of Image-Pyramid

DMA block retrieves an input image from the ex-

ternal memory and stores it into DMA input FIFO.

The block sends the signal to the reduction filter

in order to start the task of the pyramid reduction

block. The destination DMA block stores the gen-

erated image pyramid into the external memory

when it receives the signal from the pyramid re-

duction filter. At each time, source/destination

DMA block retrieves/saves 16 pixels.

4. SIMULATIONS AND EVALUATIONS

The implemented Gaussian pyramid processor

were fully synthesized by VHDL model [12] and

transferred into the FPGA (XILINX X2CV8000).

The operational clock rate of the FPGA was 30

MHz. Image data were collected by external cam-

era connected to USB interface of the emulation

platform. An image captured by the camera was

stored into the external SRAM-based memory.

The Gaussian pyramid processor retrieves an im-

age from SRAM-based memory using DMA. Then

the Gaussian processor completes the task and

save the image pyramid into the SRAM-based

memory via DMA. Fig. 7 shows examples of the

result stored in the SRAM after the processing of

the Gaussian pyramid processor.

Two software systems (written by C language)

implemented on PC (Intel Xeon CPU, Linux) and

Sun Enterprise 450 (UltraSparc II, Unix) were used

for comparison. In the case of Gaussian Pyramid

Processor, the required times for constructing

13-level pyramid with a 320X240 image was 0.16

seconds. A comparison of performances of the

Gaussian pyramid processor and other systems is

shown in Table 1. As a conclusion, the im-

plemented Gaussian pyramid processor can be

used for real-time image processing applications

that require a pyramid algorithm.

5. DISCUSSION AND CONCLUSIONS

In this paper, we designed and implemented the

Gaussian pyramid processor architecture for vari-

ous smart devices. The implemented Gaussian

pyramid processor was tested and verified in the

register transfer level architecture using FPGA-

based emulation platform. From experimental re-

(a) Filtering and Decimation through horizontal direc-

tion

(b) Filtering and Decimation through vertical direction

Fig. 6. The pyramid reduction filter.

Fig. 7. The result of the Gaussian pyramid processor.

Table 1. Performances of three implemented systems

Method Clock FPU Cycles (Mega cycles) Time (sec)

THe GPP 30Mhz No 4.8 0.16

Software(Intel Xeon) 3.06Ghz Yes 21.5 0.021

Software (UltraSparc II) 400Mhz Yes 89.1 0.223



1158 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 19, NO. 7, JULY 2016

sults, we proved that this processor can be effec-

tively used to various devices which needs SIFT.

REFERENCE

[ 1 ] B. Blair and C. Murphy, Difference of Gaus-

sian Scale-Space Pyramids for SIFT Feature

Detection, Complex Digital Systems Design,

Final report, 2007.

[ 2 ] P.J. Burt, “Fast Filter Transforms for Image

Processing,” Journal of Computer Graphics

and Image Processing, Vol. 16, No. 1, pp. 20-

51, 1981.

[ 3 ] J. Yang, X. Chen, and W. Kunz, “A PDA-

based Face Recognition System,” Proceed-

ings of Winter Application Computer Vision,

pp. 457-460, 2002.

[ 4 ] T. G. Link, N. Vijaykrishnan, M. J. Irwin, and

W. Wolf, “Embedded Hardware Face Detec-

tion,” Proceedings of the 17th International

Conferenceon VLSI Design, pp. 1221-1232, 2004.

[ 5 ] O. Sims and J. Irvine, “An FPGA Implementa-

tion of Pattern-selective Pyramidal Image

Fusion,” Proceedings of 2006 International

Conference of Field Programmable Logic and

Application, pp. 345-349, 2006.

[ 6 ] N. Petterson and L. Petterson, “Online Stereo

Calibration using FPGAs,” IEEE Proceed-

ings of Intelligent Vehicles Symposium, pp.

780-784, 2005.

[ 7 ] A. Darabiha, W.J. MacLean, and J. Rose,

“Reconfigurable Hardware Implementation of

a Phase-correlation Stereo Algorithm,” Ma-

chine Vision and Applications, Vol. 17, No. 2,

pp. 116-132, 2006.

[ 8 ] P.J. Burt and E.H. Adelson, “The Laplacian

Pyramid as a Compact Image Code,” IEEE

Transactions on Communications, Vol. 31, No.

6, pp. 532-540, 1983.

[ 9 ] Zhen-jun Du and Min Li, “SoC Verification

Based on WGL,” Journal of Korea Multime-

dia society, Vol. 9, No. 12, pp. 1607-1616, 2006

[10] P.G.D. Valle, D. Atienza, G. Paci, and F.

Poletti, “Application of FPGA Emulation to

SoC Floorplan and Packaging Exploration,”

Proceeding of XXII Conference on Design of

Circuits and Integrated System, pp. 236-240,

2003.

[11] M. Brogatti, F. Lertora, B. Foret, and L. Cali,

“A Reconfigurable System Featuring Dynam-

ically Extensible Embedded Microprocessor,

FPGA, and Customizable I/O,” IEEE Journal

of Solid- State Circuits, Vol. 38, No. 6, pp.

521-529, 2003.

[12] R. McCready, “Real-Time Face Detection on

a Configurable Hardware System”, Proceed-

ings of International Symposium on FPGA,

pp. 23-26, 2000.

Bongkyu Lee

He received the Ph.D degree

from the Department of com-

puter engineering, Seoul Natio-

nal University in 1995. Since

1996, he has been a professor at

the Jeju national university. His

interesting research fields are in

Neural Networks, image processing and Augmented

Reality.


