DOI QR코드

DOI QR Code

Hydraulic Resistance Characteristics of Compacted Weathered Granite Soil by Rotating Cylinder Test and Image Analysis

영상처리기법과 회전식 수리저항성능 실험을 이용한 다짐화강풍화토의 수리저항특성 분석

  • Kim, Young Sang (Dept. of Marine and Civil Engrg., Chonnam National Univ.) ;
  • Lim, Jae Seong (Dept. of Civil and Environmental Engrg., Chonnam National Univ.)
  • 김영상 (전남대학교 해양토목공학과) ;
  • 임재성 (전남대학교 건설환경공학과)
  • Received : 2016.05.04
  • Accepted : 2016.06.30
  • Published : 2016.07.31

Abstract

Recently, in Korea, problems related with unstability of slope or sinkhole in urban area due to erosion of compacted granite soil which was used as a backfill or embankment material have been treated as important issues. Small hole might develop inside of backfill area due to erosion of not only weathered granite soil but also clay, silt, fine sand size particles when underground water flows. Once erosion starts in a soil mass, erosion rate increases gradually to cause rapid destruction. In this study, a rotating cylinder test (RCT) was performed to evaluate the hydraulic resistance characteristics of compacted weathered granite soil under various relative densities and preconsolidation pressures. Meanwhile, an image analysis method was introduced to analyze radius of irregularly eroded sample. It was found that image analysis is an effective means of minimizing the error in calculating a critical shear stress and threshold shear stress on the irregularly eroded sample. Furthermore, in general, hydraulic resistance capacity increases with the increase of relative density and preconsolidation pressure.

현재 우리나라에서는 해저케이블 또는 해상구조물 기초부, 흙댐, 도로공사 등의 성토재료로 이용된 다짐풍화토에서 침식(Erosion)으로 인한 사면의 불안정성, 오래된 상 하수관이 누수되거나 파열되어 발생하는 도심지 싱크홀 등의 문제가 발생하고 있다. 이와 같이 건설재료로 많이 이용된 풍화토는 지하수 및 지표수 흐름이 발생할 때 다양한 입자 크기의 점토, 실트 및 세립의 모래들과 함께 침식되거나 세굴 되어 소규모 공동을 형성하며, 일단 침식이나 세굴이 발생되기 시작하면 점차 침식율이 증가하게 되어 급격한 파괴에 도달한다. 본 연구에서는 회전식 수리저항성능 실험기(RCT)를 이용하여 다양한 상대밀도와 선행압밀압력으로 압밀된 다짐화강풍화토의 수리저항성능을 평가하였다. 또한 회전으로 인하여 일정하게 세굴되지 않은 시료의 단면해석을 위해 영상처리기법을 도입하였다. 연구결과 침식으로 인하여 시료의 형상이 일정하지 않는 경우, 계산된 임계전단응력에 큰 오차가 발생되는 것으로 확인되었으며 제안된 영상처리기법으로 보정된 반지름을 이용할 경우보다 정확한 한계 및 임계전단응력 계산이 가능한 것으로 나타났다. 또한 상대밀도와 선행압밀압력이 증가할수록 한계전단응력은 증가하나 임계전단응력은 선행압밀하중 증가에 의한 효과는 크지 않은 것으로 나타났으며, 선행압밀압력에 의한 응력이력보다는 초기 상대밀도의 효과가 더 큰 것으로 나타났다.

Keywords

References

  1. Arulanandan, K., Sargunam, A., Loganathan, P., and Krone, R.B. (1973), "Application of Chemical and Electrical Parameters to Prediction of Erodibility", Highway Research Board Special Report, (135).
  2. Briaud, J.L., Ting, F., Chen, H.C., Gudavalli, S.R., Perugu, S., and Wei, G. (1999), "SRICOS: Prediction of Scour Rate in Cohesive Soils at Bridge Piers", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Reston, Virginia, USA, Vol.125, No.4, pp. 237-246. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:4(237)
  3. Briaud, J.L., Ting, F., Chen, H.C., Cao, Y., Han, S.W., and Kwak, K.S. (2001), "Erosion Function Apparatus for Scour Rate Predictions", Journal of Geotechnical and Geoenvironmental Engineering. ASCE, Vol.127, No.2, pp.105-113. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(105)
  4. Chapius, R.P. (1986a), "Quantitative Measurement of the Scour Resistance of Natural Solid Clays", Canadian Geotechnical Journal, Vol.23, pp.132-141. https://doi.org/10.1139/t86-023
  5. Chapius, R.P. (1986b), "Use of Rotational Erosion Device on Cohesive Soils", Transportation Research Record, No.1089, pp.23-28.
  6. Chapius, R.P. and Gatien, T. (1986), "An Improved Rotating Cylinder Technique for Quantitative Measurements of the Scour Resistance of Clay", Canadian Geotechnical Journal, Vol.23, pp.83-87. https://doi.org/10.1139/t86-010
  7. Cho, W.S. (2014), "Analysis of grain-size distribution of gravel river-bed using digital image processing", Master's Thesis, Dong-eui University.
  8. Dixit, J.G., Mehta, A.J., and Partheniades, E. (1982), "Redepositional Properties of Cohesive Sediments Deposited in a Long Flume", University of Florida, Coastal and Oceanographic Engineering Department.
  9. Ghebreiyessus, Y.T., Gantzer, C.J., Alberts, E.E., and Lentz, R.W. (1994), "Soil Erosion by Concentrated Flow: Shear Stress and Bulk Density", Transactions of the ASAE, Vol.37, No.6, pp.1791-1797. https://doi.org/10.13031/2013.28268
  10. Greyvenstein, B. and Van Zyl, J.E. (2007), "An Experimental Investigation into the Pressure-leakage Relationship of Some Failed Water Pipes", Journal of Water Supply: Research and Technology-AQUA, Vol.56, No.2, pp.117-124. https://doi.org/10.2166/aqua.2007.065
  11. Han, B.D. (2012), "The Effect of the Incidence Angle of Current and Consolidation Pressure on the Hydraulic Resistance Capacity of Clayey Soil", Master's Thesis, Chonnam National University.
  12. Harb, G. and Schneider, J. (2009), "Application of Two Automated Grain Sizing Approaches and Comparison with Traditional Methods", 33d IAHR Congress, pp.4973-4979.
  13. Hwang, K.N. and So, S.D. (2002), "An Investigation on Erosional Properties of Kaolinite Sediments Using Annular Flume", Conference of Korean Society of Civil Engineers, (3-6), pp.3192-3195.
  14. Hyun, Y.J. (2015), "Direction of Policy Related to the Development of Underground Space for the Sinkhole Prevention in Urban Areas", Korean Society of Road Engineers, Vol.17, No.1, pp.61-63.
  15. Lim, S.S. (2006), "Experimental Investigation of Erosion in Variably Saturated Clay Soils", Doctoral dissertation, The University of New South Wales.
  16. Kang, K.O. and Jeong, H.C., and Kim, Y.S. (2010), "Development of Apparatus for Measuring Hydraulic Resistance of Sea Ground Considering Tidal Current Flow", KGS Fall National Conference, September 9-10, pp.538.
  17. Kim, Y.M., Kim, H.M., and Hwang, K.N. (2014), "A Laboratory Study on Erosional Properties of the Deposit Bed of Kaolinite Sediments", Journal of Korean Society of Civil Engineers, Vol. 34, No.3, pp.1181-1190. https://doi.org/10.12652/Ksce.2014.34.4.1181
  18. Kim, Y.S. and Gang, G.O. (2011), "Experimental Study on Hydraulic Resistance of Sea Ground Considering Tidal Current Flow", Journal of Korean Society of Coastal and Ocean Engineers, Vol.23, No.1, pp.118-125. https://doi.org/10.9765/KSCOE.2011.23.1.118
  19. Kim, Y.S. and Jeong, S.H. (2015), "Relationship between Electrical Resistivity and Hydraulic Resistance Capacity Measured by Rotating Cylinder Test", Journal of Korean Society of Coastal and Ocean Engineers, Vol.27, No.1, pp.1-8. https://doi.org/10.9765/KSCOE.2015.27.1.1
  20. Kim, Y.S., Jeong, S.H., and Lee, C. (2015), "Effects of Flow Direction and Consolidation Pressure on Hydraulic Resistance Capacity of Soils", Journal of the Korean Geoenvironmental Society, Vol.16, No.5, pp.55-66. https://doi.org/10.14481/JKGES.2015.16.5.55
  21. Kwak, K.S., Lee, J.H., Par, J.H., Chung, M.K., and Bae, G.J. (2004), "Influence of Soil Properties on Erodibility of Fine-grained Soils", Journal of the Korean Geotechnical Society, Vol.20, No.8, pp.89-96.
  22. Masch, F.D.Jr., Espey, W.H.Jr., and Moore, W.L. (1963), "Measurements of the Shear Resistance of Cohesive Sediments", Proceedings of the Federal Inter-Agency Sedimentation Conference, Agricultural Research Service, Publication No. 970, Washington, D.C., pp. 151-155.
  23. McNiel, J., Taylor, C., and Lick, W. (1996), "Measurement of Erosion of Undisturbed Bottom Sediments with Depth", ASCE Journal of Hydraulic Engineering, Vol.122, Issue 6, pp.316-324. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:6(316)
  24. Ministry of Land (2014), "Measures of Ground for Sinkhole Prevention".
  25. Moore, W.L. and Masch, F.D., Jr. (1962), "Experiments on the Scour Resistance of Cohesive Sediments", Journal of Geophysical Research, Vol.67, No.4, pp.1437-1449. https://doi.org/10.1029/JZ067i004p01437
  26. Parchure, T.M. and Mehta, A.J. (1985), "Erosion of Soft Cohesive Sediment Deposits", Journal of Hydraulic Engineering, Vol.111, No.10, pp.1308-1326. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:10(1308)
  27. Shields, A. (1936), "Anwendung der Aenlickkeitsmeckanik und der Turbulenzforschung auf die Geschiebebewegung", Mittleilungen der Preussichen Versuchsanstalt fur Wasserbau und Schiffbau, W.P. Ott and J.C. Van Uchelen, translators, California Institute of Technology, Pasadena, Calif.
  28. Shaikh, A., Ruff, J.F., and Abt, S.R. (1988a), "Erosion Rate of Compacted NA-montmorillonite Soils", Journal of Geotechnical Engineering, ASCE, Vol.114, No.3, pp.296-305. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:3(296)
  29. Shaikh, A., Ruff, J.F., Charlie, W.A., and Abt, S.R. (1988b), "Erosion Rate of Dispersive and Nondispersive Clays", Journal of Geotechnical Engineering, ASCE, Vol.114, No.5, pp.589-600. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:5(589)
  30. Strom, K.B., Papanicolaou, A.N., Billing, B., Ely, L.L., and Hendricks, R.R. (2005), "Characterization of Particle Cluster Bedforms in a Mountain Stream", Impacts of Global Climate Change, pp.1-12.
  31. Tenbusch Sr, A. and Tenbusch, A.F. (2009), "Quick Culvert Repair", CE News, 21(7).
  32. Trammell, M.A. (2004), "Laboratory Apparatus and Methodology for Determining Water Erosion Rates of Erodible Rock and Cohesive Sediments", M.E. Thesis, University of Florida, Gainesville, Florida.
  33. Wan, C.F. and Fell, R. (2004a), "Laboratory Tests on the Rate of Piping Erosion of Soils in Embankment Dams", Geotechnical Testing Journal, ASTM, Vol.27, No.3, pp.295-303.
  34. Wan, C.F. and Fell, R. (2004b), "Investigation of Rate of Erosion of Soils in Embankment Dams", Journal of the Geotechnical and Geoenvironmental Engineering, ASCE, Vol.130, No.4, pp.373-380. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(373)
  35. Yim, S.H., Ryu, H.R., and Hwang, K.N. (2008), "Analyses on Local-Seasonal Variations of Erosional Properties of Cohesive Sediments in Keum Estuary", Journal of Korean Society of Civil Engineers, Vol.28, No.1, pp.125-135.
  36. Yokota, T., Fukatani, W., and Miyamoto, T. (2012), "The Present Situation of the Road Cave in Sinkholes Caused by Sewer Systems (FY2006-FY2009)", Technical Note of NILIM, No.668.