DOI QR코드

DOI QR Code

Beneficial Effects of Acanthopanax senticosus Extract in Type II Diabetes Animal Model via Down-Regulation of Advanced Glycated Hemoglobin and Glycosylation End Products

제2형 당뇨 동물모델에서 가시오가피 추출물의 당화혈색소 및 최종당화산물 억제를 통한 혈당조절 효과

  • Kwon, Han Ol (Research Institute of Medical Nutrition, Kyung Hee University) ;
  • Lee, Minhee (Research Institute of Medical Nutrition, Kyung Hee University) ;
  • Kim, Yong Jae (HBJbiofarm Research Institute) ;
  • Kim, Eun (HBJbiofarm Research Institute) ;
  • Kim, Ok-Kyung (Beirne B. Carter Center for Immunology Research, University of Virginia)
  • 권한올 (경희대학교 임상영양연구소) ;
  • 이민희 (경희대학교 임상영양연구소) ;
  • 김용재 ((주)함박재바이오팜) ;
  • 김은 ((주)함박재바이오팜) ;
  • 김옥경 (버지니아대학교)
  • Received : 2016.03.08
  • Accepted : 2016.03.31
  • Published : 2016.07.31

Abstract

The purpose of this study was to investigate the effect of Acanthopanax senticosus extract (ASE) (ethanol : DW=1:1, v/v) on inhibition of type 2 diabetes using an OLETF rat model via regulation of HbA1c and AGEs levels. Supplementation with ASE 0.1% and 0.5% effectively lowered levels of glucose, insulin, oral glucose tolerance test, and Homa-insulin resistance, suggesting reduced insulin resistance. Blood levels of HbA1c and AGEs were significantly reduced in a dose-dependent manner. As oxidative stress plays a key role in accelerating production of HbA1c and AGEs, which worsen symptoms of type 2 diabetes, levels of malonaldehyde and pro-inflammatory cytokines were measured. Lipid peroxidation in both blood and liver tissues was significantly reduced, and induction of pro-inflammatory cytokines interleukin-${\beta}$ and tumor necrosis factor-${\alpha}$, which elevate production of HbA1c and AGEs, was inhibited (P<0.05). To evaluate the possible cellular events after AGEs receptor activation, genetic expression of protein kinase C (PKC)-${\delta}$ and transforming growth factor (TGF)-${\beta}$ was measured by real-time polymerase chain reaction. Supplementation with both ASE 0.1% and 0.5% significantly inhibited mRNA expression of PKC-${\delta}$ and TGF-${\beta}$, indicating that ASE may have beneficial effects on preventing insulin-resistant cells or tissues from progressing to diabetic complications. Taken together, ASE has potential to improve type 2 diabetes by inhibiting insulin resistance and protein glycosylation, including production of HbA1c and AGEs. Anti-oxidative activities of ASE are a main requisite for reducing production of HbA1c and AGEs and are also related to regulation of the PKC signaling pathway, resulting in suppression of TGF-${\beta}$, which increases synthesis of collagen, prostaglandin, and disease-related proteins.

본 연구에서는 랫트를 이용한 제2형 당뇨 동물모델로 같은 혈당조절 효과가 나타나는지 검토하고 이러한 효과가 당화 혈색소를 포함한 최종당화산물(advanced glycation end products, AGEs)과 어떤 상관관계가 있는지 또한 단백질과 당화를 촉진해 당화혈색소 생성의 원인 중 하나인 산화적 스트레스와 관련된 기전을 규명하고자 하였다. 기존의 db/db 마우스에서 실험한 결과와 마찬가지로 랫트를 이용한 제2형 당뇨모델에서도 가시오가피 추출물의 섭취는 혈당을 강하시키고 homeostasis model assessment(Homa-IR)를 감소시켜 인슐린 저항성 개선에 도움을 주는 것으로 확인되었다. 특히 혈중 당화혈색소량의 감소가 두드러졌는데 이는 산화적 스트레스 감소로 인한 지질과산화물 생성의 억제가 중요한 원인으로 생각되며 이와 관련된 혈중 사이토카인 IL-$1{\beta}$와 TNF-${\alpha}$의 농도도 감소한 것으로 나타났다. 당화혈색소는 산화적 스트레스에 의해 최종당화산물로 전환이 되어 인슐린 저항성 세포의 protein kinase C(PKC)를 활성화하여 transforming growth factor(TGF)-${\beta}$를 생성하는데 가시오가피 추출물의 섭취는 최종당화산물의 농도, PKC 그리고 TGF-${\beta}$ 모두를 억제하는 것으로 확인되었으며, 이것은 가시오가피 추출물 성분이 PKC와 TGF-${\beta}$에 직접 작용하기보다는 신호전달체계의 상위에 존재하는 최종당화산물을 억제하여 나타난 결과로 생각한다. 향후 연구에서는 가시오가피 추출물을 분획화하여 어떤 성분에 의하여 당화혈색소와 최종당화산물 생성을 억제하는지에 대한 구체적인 실험이 이루어져야 할 것으로 여겨진다.

Keywords

References

  1. Ahn J, Um MY, Lee H, Jung CH, Heo SH, Ha TY. 2013. Eleutheroside E, an active component of Eleutherococcus senticosus, ameliorates insulin resistance in type 2 diabetic db/db mice. Evid Based Complement Alternat Med 2013: 934183.
  2. Brownlee M. 2001. Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813-820. https://doi.org/10.1038/414813a
  3. Ha Y, Lee M, Kwon HO, Lee YH. 2015. Effect of African mango (Irvingia gabonesis, IGOB $131^{TM}$) extract on glucose regulation in STZ-induced diabetes. J Korean Soc Food Sci Nutr 44: 1607-1611. https://doi.org/10.3746/jkfn.2015.44.11.1607
  4. Domingueti CP, Dusse LM, Carvalho Md, de Sousa LP, Gomes KB, Fernandes AP. 2015. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complications 30: 738-745.
  5. Yun WJ. 2010. Relationship between glycemic control and diabetic retinopathy. J Korean Geriatr Soc 14: 234-241. https://doi.org/10.4235/jkgs.2010.14.4.234
  6. Song F, Schmidt AM. 2012. Glycation & insulin resistance: novel mechanisms and unique targets?. Arterioscler Thromb Vasc Biol 32: 1760-1765. https://doi.org/10.1161/ATVBAHA.111.241877
  7. Schmolz MW, Sacher F, Aicher B. 2001. The synthesis of Rantes, G-CSF, IL-4, IL-5, IL-6, IL-12 and IL-13 in human whole-blood cultures is modulated by an extract from Eleutherococcus senticosus L. roots. Phytother Res 15: 268-270. https://doi.org/10.1002/ptr.746
  8. Niu HS, Liu IM, Cheng JT, Lin CL, Hsu FL. 2008. Hypoglycemic effect of syringin from Eleutherococcus senticosus in streptozotocin-induced diabetic rats. Planta Med 74: 109-113. https://doi.org/10.1055/s-2008-1034275
  9. Sun YL, Liu LD, Hong SK. 2011. Eleutherococcus senticosus as a crude medicine: Review of biological and pharmacological effects. J Med Plants Res 5: 5946-5952.
  10. Cho SJ, Park HJ, Jung UJ, Kim HJ, Moon BS, Choi MS. 2014. The beneficial effects of combined grape pomace and omija fruit extracts on hyperglycemia, adiposity and hepatic steatosis in db/db mice: A comparison with major index compounds. Int J Mol Sci 15: 17778-17789. https://doi.org/10.3390/ijms151017778
  11. Dyer DG, Dunn JA, Thorpe SR, Bailie KE, Lyons TL, Mc-Cance DR, Baynes JW. 1993. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest 91: 2463-2469. https://doi.org/10.1172/JCI116481
  12. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186: 464-478. https://doi.org/10.1016/0076-6879(90)86141-H
  13. Saltiel AR. 2001. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 104: 517-529. https://doi.org/10.1016/S0092-8674(01)00239-2
  14. Park JY, Kim DM, Kim BW, Kim YK, Kim IJ, Kim TH, Yu HJ, Lee MK, Lee IK, Cha BY, Ha SW. 2004. Oxidative stress, inflammation, and diabetic complications. BioWave 6(13).
  15. Boyd AC, Abdel-Wahab YH, McKillop AM, McNulty H, Barnett CR, O'Harte FP, Flatt PR. 2000. Impaired ability of glycated insulin to regulate plasma glucose and stimulate glucose transport and metabolism in mouse abdominal muscle. Biochim Biophys Acta 1523: 128-134. https://doi.org/10.1016/S0304-4165(00)00113-6
  16. Ishizuka T, Kajita K, Yamada K, Miura A, Kanoh Y, Ishizawa M, Wada H, Itaya S, Yamamoto M, Yasuda K, Nagata K, Okano Y. 1996. Insulin regulates PKC isoform mRNA in rat adipocytes. Diabetes Res Clin Pract 33: 159-167. https://doi.org/10.1016/0168-8227(96)01324-1
  17. Ramasamy R, Yan SF, Schmidt AM. 2011. Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci 1243: 88-102. https://doi.org/10.1111/j.1749-6632.2011.06320.x
  18. Lee YJ, Chung HY, Kwak HK, Yoon S. 2008. The effects of A. senticosus supplementation on serum lipid profiles, biomarkers of oxidative stress, and lymphocyte DNA damage in postmenopausal women. Biochem Biophys Res Commun 375: 44-48. https://doi.org/10.1016/j.bbrc.2008.07.097
  19. Park JH, Park SW, Son HK, Park BJ, Ahn BW, Song DU. 2003. Effect of drinking green tea on glycation and oxidation of aortic collagen in diabetic rat. Chonnam Med J 39: 7-13.
  20. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. 2000. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404: 787-790. https://doi.org/10.1038/35008121
  21. Tan KCB, Shiu SWM, Wong Y, Tam X. 2011. Serum advanced glycation end products (AGEs) are associated with insulin resistance. Diabetes Metab Res Rev 27: 488-492. https://doi.org/10.1002/dmrr.1188
  22. Yamazaki T, Shimosaka S, Sasaki H, Matsumura T, Tukiyama T, Tokiwa T. 2007. (+)-Syringaresinol-di-O-${\beta}$-D-glucoside, a phenolic compound from Acanthopanax senticosus Harms, suppresses proinflammatory mediators in SW982 human synovial sarcoma cells by inhibiting activating protein-1 and/or nuclear factor-${\kappa}B$ activities. Toxicol In Vitro 21: 1530-1537. https://doi.org/10.1016/j.tiv.2007.04.016
  23. Greene MW, Burrington CM, Lynch DT, Davenport SK, Johnson AK, Horsman MJ, Chowdhry S, Zhang J, Sparks JD, Tirrell PC. 2014. Lipid metabolism, oxidative stress and cell death are regulated by PKC delta in a dietary model of nonalcoholic steatohepatitis. PLoS ONE 9: e85848. https://doi.org/10.1371/journal.pone.0085848
  24. Cantley J, Boslem E, Laybutt DR, Cordery DV, Pearson G, Carpenter L, Leitges M, Biden TJ. 2011. Deletion of protein kinase C${\delta}$ in mice modulates stability of inflammatory genes and protects against cytokine-stimulated beta cell death in vitro and in vivo. Diabetologia 54: 380-389. https://doi.org/10.1007/s00125-010-1962-y

Cited by

  1. 제2형 당뇨 마우스에서 십조탕(十棗湯)에 의한 혈당 및 신기능 부전 개선효과 vol.32, pp.1, 2017, https://doi.org/10.6116/kjh.2017.32.1.15.
  2. 포제한약재의 최종당화산물 생성 억제 활성 및 항산화 효과 vol.32, pp.3, 2016, https://doi.org/10.6116/kjh.2017.32.3.63
  3. 떫은감과 포제 떫은감의 최종당화산물 생성 억제를 통한 피부 탄력 개선 효과 vol.32, pp.4, 2017, https://doi.org/10.6116/kjh.2017.32.4.17
  4. 작약 및 포제작약의 최종당화산물 억제를 통한 피부 주름 개선 효과 vol.32, pp.4, 2016, https://doi.org/10.6116/kjh.2017.32.4.53
  5. 산수유의 최종당화산물 억제로 인한 주름 개선효과 vol.32, pp.5, 2016, https://doi.org/10.6116/kjh.2017.32.5.1
  6. 최종당화산물 억제를 통한 상엽(桑葉)의 항피부노화 효과 vol.32, pp.5, 2016, https://doi.org/10.6116/kjh.2017.32.5.7