DOI QR코드

DOI QR Code

Antioxidant and Neuroprotective Effects of Green Tea Seed Shell Ethanol Extracts

녹차씨껍질 에탄올 추출물의 항산화 활성 및 신경세포 보호 효과

  • Sung, Nak-Yun (Department of Food Science and Technology, Kongju National University) ;
  • Song, Hayeon (Department of Food Science and Technology, Kongju National University) ;
  • Ahn, Dong-Hyun (Department of Food Science and Technology/Institute of Food Science, Pukyong National University) ;
  • Yoo, Yung-Choon (Department of Microbiology, College of Medicine, Konyang University) ;
  • Byun, Eui-Baek (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Jang, Beom-Su (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Park, Chulhwan (Department of Chemical Engineering, Kwangwoon University) ;
  • Park, Won-Jong (Department of Food Science and Technology, Kongju National University) ;
  • Byun, Eui-Hong (Department of Food Science and Technology, Kongju National University)
  • Received : 2016.03.09
  • Accepted : 2016.05.12
  • Published : 2016.07.31

Abstract

The objective of this study was to evaluate the antioxidant activity of green tea seed shell as an industrial byproduct. Green tea seed shell extract (GTSSE) was obtained by ethanol extraction, and the yield was $1.4{\pm}0.22%$. The radical scavenging activities [1,1-diphenyl-picrylhydrazyl and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)], xanthine oxidase inhibition activity, and reducing power of GTSSE dose-dependently increased. To estimate the neuroprotective effect of GTSSE, viability was tested in HT22 mouse hippocampal cells. GTSSE treatment induced cytotoxicity at a concentration higher than $100{\mu}g/mL$ but not at a concentration lower than $50{\mu}g/mL$. Using this optimal concentration range, GTSSE treatment significantly increased cell viability in $H_2O_2$-treated HT22 cells. Further, GTSSE treatment increased superoxide dismutase activity and decreased the malonaldehyde level, a product of lipid peroxidation, in HT22 cells. Therefore, these results indicate that green tea seed shell extract may be useful for the development of antioxidant materials and have potential activity to prevent and treat neuro-degenerative diseases such as Alzheimer's disease.

본 연구는 산업 부산물의 이용성 증진을 위하여 폐자원인 녹차씨껍질 추출물의 항산화 활성 및 신경세포 보호 효과에 관하여 평가하였다. 녹차씨껍질로부터 유용성 성분을 얻기 위하여 에탄올 추출을 한 결과 약 1.44%의 추출물의 수율을 얻을 수 있었고, 항산화 활성에 관하여 평가하기 위하여 라디칼 소거능 및 xanthine oxidase 저해능, 환원력을 평가한 결과, 녹차씨껍질 추출물의 농도가 증가할수록 항산화 활성이 유의적으로 증가하는 것으로 나타났다. 또한, 이러한 녹차씨껍질 추출물의 뇌신경세포 보호 효과에 관하여 알아보기 위하여 생쥐의 해마 유래 뇌신경세포에 녹차씨껍질 추출물을 처리한 후 $H_2O_2$로 산화적인 스트레스를 유도하여 세포독성에 관하여 알아본 결과, 녹차씨껍질 추출물의 처리는 농도 의존적으로 뇌신경 세포의 생존율을 증가시켰으며, 이에 따라 항산화 효소인 SOD 활성이 증가하고 지질과산화 생성물인 MDA level이 감소한 것을 알 수 있었다. 이상의 결과들로 녹차씨껍질 추출물의 항산화 활성 및 뇌신경세포 보호 효과에 관하여 확인할 수 있었으며, 추후 어떤 메커니즘으로 신경세포를 보호하는지 추가적인 연구가 필요할 것으로 생각한다. 또한, 이러한 결과를 활용하여 녹차씨껍질을 기능성 소재로 활용한다면 폐자원인 녹차씨껍질을 재활용하는 차원에서 그 경제적 가치가 매우 클 것으로 생각한다.

Keywords

References

  1. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. 2007. Mitochondria, oxidative stress and cell death. Apoptosis 12: 913-922. https://doi.org/10.1007/s10495-007-0756-2
  2. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  3. McBride TJ, Preston BD, Loeb LA. 1991. Mutagenic spectrum resulting from DNA damage by oxygen radicals. Biochemistry 30: 207-213. https://doi.org/10.1021/bi00215a030
  4. Joo HY, Lim KT. 2009. Protective effect of glycoprotein isolated from Cudrania tricuspidata on liver in $CCl_4$-treated A/J mice. Korean J Food Sci Technol 41: 93-99.
  5. Lin YL, Lin JK. 1997. (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-${\kappa}B$. Mol Pharmacol 52: 465-472. https://doi.org/10.1124/mol.52.3.465
  6. An BJ, Kwak JH, Son JH, Park JM, Lee JY, Park TS, Kim SY, Kim YS, Jo C, Byun MW. 2005. Physiological activity of irradiated green tea polyphenol on the human skin. Am J Chin Med 33: 535-546. https://doi.org/10.1142/S0192415X05003144
  7. Hibasami H, Komiya T, Achiwa Y, Ohnishi K, Kojima T, Nakanishi K, Akashi K, Hara Y. 1998. Induction of apoptosis in human stomach cancer cells by green tea catechins. Oncol Rep 5: 527-529.
  8. Faria A, Pestana D, Teixeira D, Couraud PO, Romero I, Weksler B, de Freitas V, Mateus N, Calhau C. 2011. Insights into the putative catechin and epicatechin transport across blood-brain barrier. Food Funct 2: 39-44. https://doi.org/10.1039/C0FO00100G
  9. Song HY, Sung NY, Jung PM, Kang MS, Park WJ, Byun EH. 2015. Whitening effect of green tea seed shell ethanol extracts. J Korean Soc Food Sci Nutr 44: 1470-1475. https://doi.org/10.3746/jkfn.2015.44.10.1470
  10. Cha WS, Cho MJ, Ding JL, Shin HJ. 2008. Nutritional component analysis of green tea tree's root and seed. Korean J Biotechnol Bioeng 23: 387-391.
  11. Min MJ, Choi MH, Kim GC, Shin HJ. 2013. Damage prevention effect of green tea seed oil on colored and decolored hair. Korean Soc Biotechnol Bioeng J 28: 287-294.
  12. Noh KH, Jang JH, Min KH, Chinzorig R, Lee MO, Song YS. 2011. Suppressive effect of green tea seed coat ethyl acetate fraction on inflammation and its mechanism in RAW 264.7 macrophage cell. J Korean Soc Food Sci Nutr 40: 625-634. https://doi.org/10.3746/jkfn.2011.40.5.625
  13. Appel HM, Govenor HL, D'Ascenzo M, Siska E, Schultz JC. 2001. Limitations of Folin assays of foliar phenolics in ecological studies. J Chem Ecol 27: 761-778. https://doi.org/10.1023/A:1010306103643
  14. Davis WB. 1947. Determination of flavanones in citrus fruits. Anal Chem 19: 476-478. https://doi.org/10.1021/ac60007a016
  15. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  16. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  17. Stirpe F, Della Corte E. 1969. The regulation of rat liver xanthine oxidase. J Biol Chem 244: 3855-3863.
  18. Oyaizu M. 1986. Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  19. Lim HA, Jang CH, Kim JH, Kim JR, Ha YR, Song YS, Kim YK, Kim JS. 2006. Anti proliferative and anticarcinogenic enzyme-inducing activities of green tea seed extract in hepatoma cells. Food Sci Biotechnol 15: 914-919.
  20. Yoo KM, Kim DO, Lee CY. 2007. Evaluation of different methods of antioxidant measurement. Food Sci Biotechnol 16: 177-182.
  21. Ahmad N, Feyes DK, Nieminen AL, Agarwal R, Mukhtar H. 1997. Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst 89: 1881-1886. https://doi.org/10.1093/jnci/89.24.1881
  22. Choi OJ, Choi KH. 2003. The physicochemical properties of Korean wild teas (green tea, semi-fermented tea, and black tea) according to degree of fermentation. J Korean Soc Food Sci Nutr 32: 356-362. https://doi.org/10.3746/jkfn.2003.32.3.356
  23. Kinlen LJ, Willows AN, Goldblatt P, Yudkin J. 1988. Tea consumption and cancer. Br J Cancer 58: 397-401. https://doi.org/10.1038/bjc.1988.227
  24. Chiang HC, Chen YY. 1993. Xanthine oxidase inhibitors from the roots of eggplant (Solanum melongena L.). J Enzyme Inhib 7: 225-235. https://doi.org/10.3109/14756369309040765
  25. Aucamp J, Gaspar A, Hara Y, Apostolides Z. 1997. Inhibition of xanthine oxidase by catechins from tea (Camellia sinensis). Anticancer Res 17: 4381-4385.
  26. Kim YS, Lee SJ, Hwang JW, Kim EH, Park PJ, Jeon BT. 2011. Antioxidant activity and protective effects of extracts from Helianthus tuberosus L. leaves on t-BHP induced oxidative stress in Chang cells. J Korean Soc Food Sci Nutr 40: 1525-1531. https://doi.org/10.3746/jkfn.2011.40.11.1525
  27. Choi Y, Jeong HS, Lee J. 2007. Antioxidant activity of methanolic extracts from some grains consumed in Korea. Food Chem 103: 130-138. https://doi.org/10.1016/j.foodchem.2006.08.004
  28. Shackelford RE, Kaufmann WK, Paules RS. 2000. Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med 28: 1387-1404. https://doi.org/10.1016/S0891-5849(00)00224-0
  29. Rao KS. 2009. Free radical induced oxidative damage to DNA: relation to brain aging and neurological disorders. Indian J Biochem Biophys 46: 9-15.
  30. Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim MBH. 2005. Multifunctional activities of green tea catechins in neuroprotection. Neurosignals 14: 46-60. https://doi.org/10.1159/000085385
  31. Zemlan FP, Thienhaus OJ, Bosmann HB. 1989. Superoxide dismutase activity in Alzheimer's disease: possible mechanism for paired helical filament formation. Brain Res 476: 160-162. https://doi.org/10.1016/0006-8993(89)91550-3
  32. Weinreb O, Amit T, Mandel S, Youdim MBH. 2009. Neuroprotective molecular mechanisms of (-)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr 4: 283-296. https://doi.org/10.1007/s12263-009-0143-4
  33. Morrow JD, Awad JA, Kato T, Takahashi K, Badr KF, Roberts LJ 2nd, Burk RF. 1992. Formation of novel non-cyclooxygenase-derived prostanoids (F2-isoprostanes) in carbon tetrachloride hepatotoxicity. An animal model of lipid peroxidation. J Clin Invest 90: 2502-2507. https://doi.org/10.1172/JCI116143
  34. Anzai K, Ogawa K, Goto Y, Senzaki Y, Ozawa T, Yamamoto H. 1999. Oxidation-dependent changes in the stability and permeability of lipid bilayers. Antioxid Redox Signal 1: 339-347. https://doi.org/10.1089/ars.1999.1.3-339
  35. Bermejo P, Gomez-Serranillos P, Santos J, Pastor E, Gil P, Martin-Aragon S. 1997. Determination of malonaldehyde in Alzheimer's disease: a comparative study of high-performance liquid chromatography and thiobarbituric acid test. Gerontology 43: 218-222. https://doi.org/10.1159/000213853
  36. Inal ME, Kanbak G, Sunal E. 2001. Antioxidant enzyme activities and malondialdehyde levels related to aging. Clin Chim Acta 305: 75-80. https://doi.org/10.1016/S0009-8981(00)00422-8
  37. Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, Park J, Park CW, Suh SI. 2001. The green tea polyphenol (-)-epigallocatechin gallate attenuates ${\beta}$-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 70: 603-614. https://doi.org/10.1016/S0024-3205(01)01438-2

Cited by

  1. 청도반시(Diospyros kaki Thunb. cv. Cheongdo-Bansi) 탈삽 껍질 추출물의 산화스트레스로부터 PC-12 신경세포 보호 효과 vol.49, pp.5, 2017, https://doi.org/10.9721/kjfst.2017.49.5.538
  2. 감 심지 에탄올 추출물의 항산화 활성 및 신경세포 보호 효과 vol.52, pp.1, 2016, https://doi.org/10.9721/kjfst.2020.52.1.60
  3. Scopolamine 유발 기억 손상 마우스에서 익모초의 효과 vol.34, pp.2, 2020, https://doi.org/10.15188/kjopp.2020.04.34.2.81