DOI QR코드

DOI QR Code

Comparison of Nutritional Compositions between Amaranth Baby-Leaves Cultivated in Korea

국내 재배 아마란스 어린잎의 영양성분 비교

  • Jang, Hye-Lim (Food Analysis Research Center, Suwon Women's University) ;
  • Yoo, Min (Major in Biological Sciences, Keimyung University) ;
  • Nam, Jin-Sik (Food Analysis Research Center, Suwon Women's University)
  • 장혜림 (수원여자대학교 식품분석연구센터) ;
  • 유민 (계명대학교 생명과학전공) ;
  • 남진식 (수원여자대학교 식품분석연구센터)
  • Received : 2016.02.29
  • Accepted : 2016.04.23
  • Published : 2016.07.31

Abstract

In the present study, we compared and investigated the nutritional compositions of Amaranthus cruentus and Amaranthus hypochondriacus baby-leaves cultivated in Korea. Baby-leaves of two amaranthes consisted of more than 92% moisture, and A. cruentus contained a higher amount of moisture than A. hypochondriacus. Meanwhile, A. hypochondriacus contained higher levels of crude ash, crude protein, crude lipid, carbohydrates, and dietary fiber than A. cruentus. The major free sugars of the two amaranth baby-leaves were fructose and glucose. Fructose content of A. hypochondriacus was higher than that of A. cruentus, and glucose content of A. cruentus was higher than that of A. hypochondriacus. Acetic acid, malic acid, and fumaric acid were detected in two amaranth leaves, but succinic acid was not detected. Two amaranth leaves contained 17 amino acids except for methionine, proline, and tyrosine, and leaves contained the highest glutamic acid contents. In addition, A. cruentus and A. hypochondriacus leaves contained high contents of taurine and ${\gamma}$-aminobutyric acid and showed various biological activities. The major mineral and fatty acid of the two amaranth leaves were potassium and linolenic acid (C18:3), respectively. The ${\beta}$-carotene contents of A. cruentus and A. hypochondriacus leaves were $478.72{\mu}g/100g$ and $474.12{\mu}g/100g$, respectively. In vitamin B complex, $B_2$, $B_3$, and $B_5$ were detected in the two amaranth leaves whereas vitamins $B_1$, $B_6$, and $B_{12}$ were not detected. A. hypochondriacus contained higher amounts of vitamin C and E than those of A. cruentus. Overall, amaranth leaves contained high amounts of nutritional components. Therefore, amaranth leaves are expected to be useful for the development of a functional food. Moreover, these results will provide fundamental data for advancing sitological value, breeding new cultivars, and promoting leafy vegetable usage.

본 연구에서는 아마란스 잎의 식품학적 가치를 향상시키고, 기능성 쌈 채소로의 육성과 활용에 기초자료를 제공하고자 국내에서 재배된 아마란스 Amaranthus cruentus와 Amaranthus hypochondriacus 어린잎의 영양성분을 비교 조사하였다. 아마란스 두 종류의 일반성분은 수분이 대부분을 차지하였으며, A. hypochondriacus보다 A. cruentus의 수분 함량이 더 높았다. 반면 A. hypochondriacus 잎의 조회분, 조단백, 조지방, 탄수화물 및 식이섬유 함량이 A. cruentus 잎보다 높았다. 아마란스 잎의 주요 유리당은 fructose와 glucose로 확인되었으며, fructose는 A. hypochondriacus의 잎에서, glucose는 A. cruentus의 잎에서 더 높게 측정되었다. 유기산은 succinic acid를 제외한 acetic, malic, fumaric acid가 검출되었으며, 아미노산은 methionine과 proline, tyrosine을 제외한 총 17가지가 함유되어 있는 것으로 확인되었다. 두 아마란스 잎 모두 필수 아미노산 함량보다 비필수 아미노산 함량이 더 높았으나 비필수 아미노산 중 glutamic acid의 함량이 가장 높게 함유되어 있어 이에 따른 감칠맛의 정미성이 있을 것으로 생각된다. 또한, 기타 아미노산으로 다양한 생리활성을 가진 taurine과 GABA(${\gamma}$-amino butyric acid)가 다량 함유되어 있어 기능성 쌈 채소로의 역할이 기대된다. 아마란스 두 종류의 무기질은 K이 대부분을 차지하였으며, 모든 무기질은 A. cruentus보다 A. hypochondriacus에서 높았다. 아마란스 잎의 지방산은 대부분 불포화 지방산이었으며, 그중에서도 오메가-3 지방산인 linolenic acid 함량이 높은 비중을 차지하고 있었다. A. cruentus와 A. hypochondriacus 잎의 ${\beta}$-carotene 함량은 각각 $478.72{\mu}g/100g$, $474.12{\mu}g/100g$으로 측정되었으며, 비타민 B군은 $B_2$, $B_3$, $B_5$만이 검출되었고 $B_1$, $B_6$, $B_{12}$는 검출되지 않았다. 또한 A. hypochondriacus 잎에는 A. cruentus 잎보다 더 많은 양의 항산화 비타민 C와 E를 함유하고 있었다. 이상의 결과로 아마란스 잎은 품종, 재배 지역 및 환경 등에 따라 각 함량에 차이는 있으나 다양한 영양성분을 함유하고 있는 것으로 조사되었으며, 이에 따라 기능성 쌈 채소로써의 이용성이 높을 것으로 기대된다.

Keywords

References

  1. Hong SY, Cho KS, Jin YI, Yeon YH, Kim SJ, Nam JH, Jeong JC, Kwon OK, Sohn HB. 2014. Comparison of growth characteristics, antioxidant activity and total phenolic contents of Amaranthus species according to the different cultivation regions and varieties in South Korea. Korean J Crop Sci 59: 16-21. https://doi.org/10.7740/kjcs.2014.59.1.016
  2. Choi CR, Choi HJ, Kim SR, Lee JH, Shin MS. 2000. Comparisons of characteristics of amaranth starches isolated from five cultivars grown in Korea. Korean J Food Sci Technol 32: 252-257.
  3. Breene WM. 1991. Food uses of grain amaranth. Cereal Foods World 36: 426-430.
  4. Baker LA, Rayas-Duarte P. 1998. Freeze-thaw stability of amaranth starch and the effects of salt and sugars. Cereal Chem 75: 301-307. https://doi.org/10.1094/CCHEM.1998.75.3.301
  5. Koeppe SJ, Harris PL, Hanna MA, Rupnow JH, Walker CE, Cuppett SL. 1987. Physical properties and some nutritional characteristics of an extrusion product with defatted amaranth seeds and defatted maize gluten meal (80:20 ratio). Cereal Chem 64: 332-336.
  6. Gamel TH, Linssen JP, Mesallem AS, Damir AA, Shekib LA. 2005. Effect of seed treatments on the chemical composition and properties of two amaranth species: starch and protein. J Sci Food Agric 85: 319-327. https://doi.org/10.1002/jsfa.1988
  7. de Ruiz ASC, Bressani R. 1990. Effect of germination on the chemical composition and nutritive value of amaranth grain. Cereal Chem 67: 519-522.
  8. Baltensperger DD, Weber LE, Nelson LA. 1992. Registration of 'Plainsman' grain amaranth. Crop Sci 32: 1510-1511. https://doi.org/10.2135/cropsci1992.0011183X003200060047x
  9. Resio AC, Aguerre RJ, Suarez C. 1999. Analysis of the sorptional characteristics of amaranth starch. J Food Eng 42: 51-57. https://doi.org/10.1016/S0260-8774(99)00103-X
  10. Kong X, Corke H, Bertoft E. 2009. Fine structure characterization of amylopectins from grain amaranth starch. Carbohydr Res 344: 1701-1708. https://doi.org/10.1016/j.carres.2009.05.032
  11. Pisařikova B, Kracmar S, Herzig I. 2005. Amino acid contents and biological value of protein in various amaranth species. Czech J Anim Sci 50: 169-174.
  12. Mendonca S, Saldiva PH, Cruz RJ, Areas JAG. 2009. Amaranth protein presents cholesterol-lowering effect. Food Chem 116: 738-742. https://doi.org/10.1016/j.foodchem.2009.03.021
  13. Plate AYA, Areas JAG. 2002. Cholesterol-lowering effect of extruded amaranth (Amaranthus caudatus L.) in hypercholesterolemic rabbits. Food Chem 76: 1-6. https://doi.org/10.1016/S0308-8146(01)00238-2
  14. Lipkin A, Anisimova V, Nikonorova A, Babakov A, Krause E, Bienert M, Grishin E, Egorov T. 2005. An antimicrobial peptide Ar-AMP from amaranth (Amaranthus retroflexus L.) seeds. Phytochemisty 66: 2426-2431. https://doi.org/10.1016/j.phytochem.2005.07.015
  15. Tovar-Perez EG, Guerrero-Legarreta I, Farres-Gonzalez A, Soriano-Santos J. 2009. Angiotensin I-converting enzymeinhibitory peptide fractions from albumin 1 and globulin as obtained of amaranth grain. Food Chem 116: 437-444. https://doi.org/10.1016/j.foodchem.2009.02.062
  16. Amin I, Norazaidah Y, Hainida KIE. 2006. Antioxidant activity and phenolic content of raw and blanched Amaranthus species. Food Chem 94: 47-52. https://doi.org/10.1016/j.foodchem.2004.10.048
  17. Pasko P, Barton H, Zagrodzki P, Gorinstein S, Folta M, Zachwieja Z. 2009. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem 115: 994-998. https://doi.org/10.1016/j.foodchem.2009.01.037
  18. Maiyo ZC, Ngure RM, Matasyoh JC, Chepkorir R. 2010. Phytochemical constituents and antimicrobial activity of leaf extracts of three Amaranthus plant species. Afr J Biotechnol 9: 3178-3182.
  19. AOAC. 2005. Official methods of analysis. 18th ed. Association of Official Analytical Chemists, Washington, DC, USA.
  20. Jang HL, Lee JH, Hwang MJ, Choi Y, Kim H, Hwang J, Nam JS. 2015. Comparison of physicochemical properties and antioxidant activities between Lentinula edodes and new cultivar Lentinula edodes GNA01. J Korean Soc Food Sci Nutr 44: 1484-1491. https://doi.org/10.3746/jkfn.2015.44.10.1484
  21. Park KY, Ha JO, Rhee SH. 1996. A study on the contents of dietary fibers and crude fiber in Kimchi ingredients and Kimchi. J Korean Soc Food Nutr 25: 69-75.
  22. Schaller D. 1978. Fiber content and structure in foods. Am J Clin Nutr 31: S99-S102. https://doi.org/10.1093/ajcn/31.10.S99
  23. Wills RBH, Wong AWK, Scriven FM, Greenfield H. 1984. Nutrient composition of Chinese vegetables. J Agric Food Chem 32: 413-416. https://doi.org/10.1021/jf00122a059
  24. Cho YS, Park SK, Chun SS, Moon JS, Ha BS. 1993. Proximate, sugar and amino acid compositions of Dolsan leaf mustard (Brassica juncea). J Korean Soc Food Nutr 22: 48-52.
  25. Park SI, Kim TS, Park CG, Kang MH. 2012. Nutritional and sensory of green leafy vegetables cultivated from medicinal plant seed. J East Asian Soc Diet Life 22: 271-277.
  26. Anderson JW. 1986. Dietary fiber in nutrition management of diabetes. In Dietary Fiber: Basic and Clinical Aspects. Vahouny GV, Kritchevsky D, eds. Plenum Press, New York, NY, USA. p 343-360.
  27. Park SK, Cho YS, Park JR, Chun SS, Moon JS. 1993. Nonvolatile organic acids, mineral, fatty acids and fiber compositions in Dolsan leaf mustard (Brassica juncea). J Korean Soc Food Nutr 22: 53-57.
  28. Kim MH, Jang HL, Yoon KY. 2012. Changes in physicochemical properties of Haetsun vegetables by blanching. J Korean Soc Food Sci Nutr 41: 647-654. https://doi.org/10.3746/jkfn.2012.41.5.647
  29. Son HK, Kang ST, Jung HO, Lee JJ. 2013. Changes in physicochemical properties of Peucedanum japonicum Thunb. after blanching. Korean J Food Preserv 20: 628-635. https://doi.org/10.11002/kjfp.2013.20.5.628
  30. Lee JJ, Jung HO. 2012. Changes in physicochemical properties of Spergularia marina Griseb by blanching. Korean J Food Preserv 19: 866-872. https://doi.org/10.11002/kjfp.2012.19.6.866
  31. Kim YJ, Lee DH, Kim KI. 2012. The comparative study of components in Luwak coffee and Indonesian coffee. J Korea Soc Coffee Ind 1: 24-30.
  32. Park SH, Lee JH. 2005. The correlation of physico-chemical characteristics of Kimchi with sourness and overall acceptability. Korean J Food Cook Sci 21: 103-109.
  33. Shallenberger RS. 2012. Taste chemistry. In Sour and Salty Organic Substances. Rudolf H, Mori K, eds. Blackie Academy, London, UK. p 289-291.
  34. Ockerman HW, Crespo FL. 1982. Physicochemical changes occurring during storage of precured beef blends at different temperatures and two levels of salt. J Food Sci 47: 849-851. https://doi.org/10.1111/j.1365-2621.1982.tb12728.x
  35. Komata Y. 1969. The taste and constituents of foods. Nippon Shokuhin Kogyo Gakkaishi 3: 26.
  36. Chesney RW. 1985. Taurine: its biological role and clinical implications. Adv Pediatr 32: 1-42.
  37. Huxtable RJ. 1992. Physiological actions of taurine. Physiol Rev 72: 101-163. https://doi.org/10.1152/physrev.1992.72.1.101
  38. Chang JS, Lee BS, Kim YG. 1992. Changes in ${\gamma}$-aminobutyric acid (GABA) and the main constituents by a treated conditions and of anaprobically treated green tea leaves. Korean J Food Sci Technol 24: 315-319.
  39. Lee BH, Choi SH, Shin TJ, Hwang SH, Kang J, Kim HJ, Kim BJ, Nah SY. 2012. Effects of ginsenoside metabolites on GABAA receptor-mediated ion currents. J Ginseng Res 36: 55-60. https://doi.org/10.5142/jgr.2012.36.1.55
  40. Park TS, Park JE, Chang JS, Son MW, Sohn KH. 1998. Taurine content in Korean foods of plant origin. J Korean Soc Food Sci Nutr 27: 801-807.
  41. Shukla S, Bhargava A, Chatterjee A, Srivastava J, Singh N, Singh SP. 2006. Mineral profile and variability in vegetable amaranth (Amaranthus tricolor). Plant Foods Hum Nutr 61: 23-28.
  42. Akubugwo IE, Obasi NA, Chinyere GC, Ugbogu AE. 2007. Nutritional and chemical value of Amaranthus hybridus L. leaves from Afikpo, Nigeria. Afr J Biotechnol 6: 2833-2839. https://doi.org/10.5897/AJB2007.000-2452
  43. National Academy of Agricultural Science. 2011. Food com position table. 8th revision. Rural Development Administration, Suwon, Korea. p 198.
  44. Lee HA, Yoo IJ, Lee BH. 1997. Research and development trends on omega-3 fatty acid fortified foodstuffs. J Korean Soc Food Sci Nutr 26: 161-174.
  45. Mosha TC, Pace RD, Adeyeye S, Mtebe K, Laswai H. 1995. Proximate composition and mineral content of selected Tanzanian vegetables and the effect of traditional processing on the retention of ascorbic acid, riboflavin and thiamine. Plant Foods Hum Nutr 48: 235-245. https://doi.org/10.1007/BF01088445
  46. Oboh G, Raddatz H, Henle T. 2008. Antioxidant properties of polar and non-polar extracts of some tropical green leafy vegetables. J Sci Food Agric 88: 2486-2492. https://doi.org/10.1002/jsfa.3367

Cited by

  1. Changes in Nutritional Composition and Physicochemical Properties of Mustard Leaf (Brassica juncea) Kimchi during Fermentation vol.29, pp.5, 2016, https://doi.org/10.9799/ksfan.2016.29.5.706
  2. 아마란스의 생육기간에 따른 건물생산성 및 종실 수량 vol.31, pp.1, 2018, https://doi.org/10.7732/kjpr.2018.31.1.024