DOI QR코드

DOI QR Code

Behavior of Campylobacter jejuni Biofilm Cells and Viable But Non-Culturable (VBNC) C. jejuni on Smoked Duck

훈제오리에서 캠필로박터균 생물막 및 Viable But Non-Culturable(VBNC) 상태에서의 행동특성

  • Jo, Hye Jin (Department of Food and Nutrition, Kyung Hee University) ;
  • Jeon, Hye Ri (Department of Food and Nutrition, Kyung Hee University) ;
  • Yoon, Ki Sun (Department of Food and Nutrition, Kyung Hee University)
  • 조혜진 (경희대학교 식품영양학과) ;
  • 전혜리 (경희대학교 식품영양학과) ;
  • 윤기선 (경희대학교 식품영양학과)
  • Received : 2016.03.14
  • Accepted : 2016.05.09
  • Published : 2016.07.31

Abstract

Biofilm cells and viable but non-culturable (VBNC) state may play a role in the survival of Campylobacter jejuni under unfavorable environmental conditions. The objective of this study was to investigate the behavior of C. jejuni biofilm cells and VBNC cells on smoked duck. The transfer of C. jejuni biofilm cells to smoked duck and its ability to resuscitate from biofilm and VBNC cells on smoked duck was investigated. Transfer experiments were conducted from C. jejuni biofilm cells to smoked duck after 5 min, 1 h, 3 h, and 24 h contact at room temperature, and the efficiency of transfer (EOT) was calculated. In addition, smoked duck was inoculated with C. jejuni biofilm and VBNC cells and then stored at 10, 24, 36, and $42^{\circ}C$ to examine the cells' ability to resuscitate on smoked ducks. The 5 min contact time between C. jejuni biofilm cells and smoked duck showed a higher EOT (0.92) than the 24 h contact time (EOT=0.08), and the EOT decreased as contact time increased. Furthermore, C. jejuni biofilm cells on smoked duck were not recovered at 10, 24, and $36^{\circ}C$, and C. jejuni VBNC cells were not resuscitated at $42^{\circ}C$. Although the resuscitation of C. jejuni biofilm and VBNC cells was not observed on smoked duck, microbial criteria of C. jejuni is needed in poultry and processed poultry products due to risk of its survival and low infectious dose.

본 연구에서 가금류의 주요 병원성 식중독 균을 인위적으로 오염시킨 훈제오리육을 진공포장 조건에서 10, 15, $24^{\circ}C$에 저장하면서 유통기한 동안 관찰한 미생물의 증식 및 생존 결과 Campylobacter jejuni는 저장기간 이내에 사멸하는 경향을 보였으며, Salmonella Typhimurium과 Listeria monocytogenes는 균주의 성장 속도에는 차이가 있었으나 증식하는 경향을 보였다. 훈제오리의 유통온도는 $10^{\circ}C$이며 유통기한이 약 30일인 것을 고려했을 때, 초기 오염 수준이 Campylobacter 균주에 의한 식중독을 유발하게 되는 균수 500 CFU/g 수준 이하에서는 유통기한 내에 문제가 없을 것으로 생각한다. 그러나 낮은 온도에서 저항성이 증가하며 살아있으나 배양은 불가능한 상태인 VBNC 상태의 C. jejuni의 특성에 따라 적절한 조건에서 회복되어 병원성을 일으킬 가능성이 있으므로 C. jejuni에 대한 지속적인 관리가 필요하다. 또한, S. Typhimurium과 L. monocytogenes의 경우 일반적인 유통/보관 온도인 $10^{\circ}C$에서도 증식이 가능하며, 특히 가공품 및 RTE 식품은 적절한 가열처리 없이 소비할 경우 식중독 발생 가능성이 높다는 점에서 제품 제조 단계에서부터 위생적인 관리가 필요하다. 본 연구에서는 C. jejuni biofilm cells을 인위적으로 오염시킨 훈제오리육을 진공포장 하여 일반 유통/보관 온도인 $10^{\circ}C$와 실온, 그리고 일반적으로 C. jejuni가 증식 가능한 온도인 $36^{\circ}C$에서 저장하였으나, C. jejuni biofilm cell은 훈제오리에서는 모든 온도에서 재증식이 불가능한 것으로 관찰되었다. 또한, $10^{\circ}C$의 저온에서 유도한 VBNC 상태의 C. jejuni를 훈제오리에 인위적으로 오염시키고 혐기적 조건에서 $42^{\circ}C$에 1일간 저장하며 VBNC 상태의 C. jejuni의 재증식 가능성을 분석하였으나, 최적 증식 온도인 $42^{\circ}C$에서도 재증식은 관찰되지 않았다. 이처럼 본 연구에서는 biofilm을 형성한 C. jejuni도 VBNC 상태의 C. jejuni는 살아 있으나 훈제오리에서의 증식은 관찰되지 않았다. 따라서 훈제오리에서의 C. jejuni의 위험성은 매우 적은 것으로 생각한다. 그러나 C. jejuni의 경우 매우 적은 양으로도 식중독을 일으킬 수 있고 C. jejuni biofilm 및 VBNC의 특성에 따라 잠재적인 위험성을 포함하는 동시에 유통/보관 온도인 냉장 온도에서 더 잘 살아남는다는 점에서 식중독 발생의 주요 원인으로 작용할 수 있는 교차오염과 전이를 예방하는 것이 중요하므로 이에 대한 관리가 강조되어야 할 것으로 생각한다.

Keywords

References

  1. Korea Duck Association. 2013. Duck Consumption. http://www.koreaduck.org/sub/statistics_3_7.asp?mNum=3&sNum=3&p=7 (accessed Nov 2013).
  2. Ministry of Food and Drug Safety. 2013. Foodborne Illness Statistics. http://www.foodsafetykorea.go.kr/portal/healthyfoodlife/foodPoisoningStat.do?menu_no=519&menu_grp=MENU_GRP02 (accessed Nov 2013).
  3. Franco DA, Williams CE. 1994. Campylobacter jejuni. In Foodborne Disease Handbook. Hui YH, Gorham JR, Murrell KD, Cliver DO, eds. Marcel Dekker Inc., New York, NY, USA. p 71-96.
  4. Skirrow MB. 1991. Epidemiology of Campylobacter enteritis. Int J Food Microbiol 12: 9-16. https://doi.org/10.1016/0168-1605(91)90044-P
  5. Stern N, Nachamkin I, Blaser M, Tompkins L. 1992. Reservoirs for Campylobacter jejuni and approaches for intervention in poultry. American Society for Microbiology, Washington, DC, USA. p 49-60.
  6. Black RE, Levine MM, Clements ML, Hughes TP, Blaser MJ. 1988. Experimental Campylobacter jejuni infection in humans. J Infect Dis 157: 472-479. https://doi.org/10.1093/infdis/157.3.472
  7. Moore JE, Corcoran D, Dooley JS, Fanning S, Lucey B, Matsuda M, McDowell DA, Megraud F, Millar BC, O'Mahony R, O'Riordan L, O'Rourke M, Rao JR, Rooney PJ, Sails A, Whyte P. 2005. Campylobacter. Vet Res 36: 351-382. https://doi.org/10.1051/vetres:2005012
  8. Nachamkin I. 1999. Campylobacter and Arcobacter. Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, eds. 7th ed. ASM Press, Washington, DC, USA. p 716-726.
  9. Ku HK, Park SR, Kim SK. 2008. Characterization of viable but nonculturable condition of Escherichia coli induced with copper. Korean J Microbiol Biotechnol 36: 209-214.
  10. Bogosian G, Morris PJ, O'Neil JP. 1998. A mixed culture recovery method indicates that enteric bacteria do not enter the viable but nonculturable state. Appl Environ Microbiol 64: 1736-1742.
  11. Day AP, Oliver JD. 2004. Changes in membrane fatty acid composition during entry of Vibrio vulnificus into the viable but nonculturable state. J Microbiol 42: 69-73.
  12. Oliver JD. 2005. The viable but nonculturable state in bacteria. J Microbiol 43: 93-100.
  13. Blaser MJ, Hardesty HL, Powers B, Wang WL. 1980. Survival of Campylobacter fetus subsp. jejuni in biological milieus. J Clin Microbiol 11: 309-313.
  14. Moran AP, Upton ME. 1987. Factors affecting production of coccoid forms by Campylobacter jejuni on solid media during incubation. J Appl Bacteriol 62: 527-537. https://doi.org/10.1111/j.1365-2672.1987.tb02685.x
  15. Rollins DM, Colwell RR. 1986. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl Environ Microbiol 52: 531-538.
  16. Jones DM, Sutcliffe EM, Curry A. 1991. Recovery of viable but non-culturable Campylobacter jejuni. J Gen Microbiol 137: 2477-2482. https://doi.org/10.1099/00221287-137-10-2477
  17. Stern NJ, Jones DM, Wesley IV, Rollins DM. 1994. Colonization of chicks by non-culturable Campylobacter spp. Lett Appl Microbiol 18: 333-336. https://doi.org/10.1111/j.1472-765X.1994.tb00882.x
  18. Ziprin RL, Droleskey RE, Hume ME, Harvey RB. 2003. Failure of viable nonculturable Campylobacter jejuni to colonize the cecum of newly hatched leghorn chicks. Avian Dis 47: 753-758. https://doi.org/10.1637/7015
  19. Hengge-Aronis R. 1999. Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr Opin Microbiol 2: 148-152. https://doi.org/10.1016/S1369-5274(99)80026-5
  20. Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: From the natural environment to infectious diseases. Nat Rev Microbiol 2: 95-108. https://doi.org/10.1038/nrmicro821
  21. Joshua GW, Guthrie-Irons C, Karlyshev AV, Wren BW. 2006. Biofilm formation in Campylobacter jejuni. Microbiology 152: 387-396. https://doi.org/10.1099/mic.0.28358-0
  22. Reeser RJ, Medler RT, Billington SJ, Jost BH, Joens LA. 2007. Characterization of Campylobacter jejuni biofilms under defined growth conditions. Appl Environ Microbiol 73: 1908-1913. https://doi.org/10.1128/AEM.00740-06
  23. Sanders SQ, Boothe DH, Frank JF, Arnold JW. 2007. Culture and detection of Campylobacter jejuni within mixed microbial populations of biofilms on stainless steel. J Food Prot 70: 1379-1385. https://doi.org/10.4315/0362-028X-70.6.1379
  24. Teh KH, Flint S, French N. 2010. Biofilm formation by Campylobacter jejuni in controlled mixed-microbial populations. Int J Food Microbiol 143: 118-124. https://doi.org/10.1016/j.ijfoodmicro.2010.07.037
  25. Moe KK, Mimura J, Ohnishi T, Wake T, Yamazaki W, Nakai M, Misawa N. 2010. The mode of biofilm formation on smooth surfaces by Campylobacter jejuni. J Vet Med Sci 72: 411-416. https://doi.org/10.1292/jvms.09-0339
  26. Ica T, Caner V, Istanbullu O, Nguyen HD, Ahmed B, Call DR, Beyenal H. 2012. Characterization of mono-and mixedculture Campylobacter jejuni biofilms. Appl Environ Microbiol 78: 1033-1038. https://doi.org/10.1128/AEM.07364-11
  27. Park NY, Hong SH, Yoon KS. 2014. Effects of commercial marinade seasoning and a natural blend of cultured sugar and vinegar on Campylobacter jejuni and Salmonella Typhimurium and the texture of chicken breasts. Poult Sci 93: 719-727. https://doi.org/10.3382/ps.2013-03595
  28. Park NY, Ro EY, Jo HJ, Park KS, Yoon KS. 2014. Effect of packaging and temperature on survival kinetics of Campylobacter jejuni on precooked chicken breast. J Food Saf 34: 371-379. https://doi.org/10.1111/jfs.12137
  29. Rossoni EMM, Gaylarde CC. 2000. Comparison of sodium hypochlorite and peracetic acid as sanitising agents for stainless steel food processing surfaces using epifluorescence microscopy. Int J Food Microbiol 61: 81-85. https://doi.org/10.1016/S0168-1605(00)00369-X
  30. Marques SC, Rezende JdGOS, Alves LAdF, Silva BC, Alves E, Abreu LRd, Piccoli RH. 2007. Formation of biofilms by Staphylococcus aureus on stainless steel and glass surfaces and its resistance to some selected chemical sanitizers. Braz J Microbiol 38: 538-543. https://doi.org/10.1590/S1517-83822007000300029
  31. Rodriguez A, McLandsborough LA. 2007. Evaluation of the transfer of Listeria monocytogenes from stainless steel and high-density polyethylene to Bologna and American cheese. J Food Prot 70: 600-606. https://doi.org/10.4315/0362-028X-70.3.600
  32. Kim SJ, Kim GH, Park JH, Park BG, Park MS, Oh DH. 2012. Analysis of transfer rate on Listeria monocytogenes contaminated pork meat during processing. J Fd Hyg Safety 27: 432-441. https://doi.org/10.13103/JFHS.2012.27.4.432
  33. Wadhawan T, Maruska ZB, Siripattanakul S, Hill CB, Gupta A, Pruss BM, McEvoy JM, Khan E. 2011. A new method to determine initial viability of entrapped cells using fluorescent nucleic acid staining. Bioresour Technol 102: 1622-1627. https://doi.org/10.1016/j.biortech.2010.09.027
  34. Adzitey F, Huda N, Ali GR. 2012. Prevalence and antibiotic resistance of Campylobacter, Salmonella, and L. monocytogenes in ducks: A review. Foodborne Pathog Dis 9: 498-505. https://doi.org/10.1089/fpd.2011.1109
  35. Flament A, Soubbotina A, Mainil J, Marlier D. 2012. Prevalence of Salmonella serotypes in male mule ducks in Belgium. Vet Rec 170: 311. https://doi.org/10.1136/vr.100156
  36. Ku SK, Hwang SH, Lim SD, Lee KH, Kim YB. 2013. Nutritional characteristics and quality changes of duck by-products during frozen storage at-20$^{\circ}C$. Korean J Food Sci An 33: 109-118. https://doi.org/10.5851/kosfa.2013.33.1.109
  37. Little CL, Richardson JF, Owen RJ, de Pinna E, Threlfall EJ. 2008. Prevalence, characterisation and antimicrobial resistance of Campylobacter and Salmonella in raw poultrymeat in the UK, 2003-2005. Int J Environ Health Res 18: 403-414. https://doi.org/10.1080/09603120802100220
  38. Uyttendaele M, De Troy P, Debevere J. 1999. Incidence of Listeria monocytogenes in different types of meat products on the Belgian retail market. Int J Food Microbiol 53: 75-80. https://doi.org/10.1016/S0168-1605(99)00155-5
  39. Choi BG, Park JH, Kim HS, Jeon HR, Min JH, Yoon KS. 2015. Effect of slightly acidic electrolyzed water on the egg quality and the survival of S. enteritidis during storage. Abstract No P-J06 presented at the conference of the Korea Society of Foodservice Sanitation. Sookmyung Women's University, Seoul, Korea.
  40. Michaelsen AR, Sebranek JG, Dickson JS. 2006. Effects of microbial inhibitors and modified atmosphere packaging on growth of Listeria monocytogenes and Salmonella enterica Typhimurium and on quality attributes of injected pork chops and sliced cured ham. J Food Prot 69: 2671-2680. https://doi.org/10.4315/0362-028X-69.11.2671
  41. Ministry of Food and Drug Safety. 2016. Animal product of processing standards and component specification. http://www.mfds.go.kr/index.do?mid=687&pageNo=1&seq=10248 &cmd=v (accessed Mar 2016).
  42. Yoon KS, Burnette CN, Oscar TP. 2004. Development of predictive models for the survival of Campylobacter jejuni (ATCC 43051) on cooked chicken breast patties and in broth as a function of temperature. J Food Prot 67: 64-70. https://doi.org/10.4315/0362-028X-67.1.64
  43. Morey A, Singh M, McKee SR. 2012. Efficacy of manufacturer recommended microwave time against Listeria monocytogenes in ready-to-eat chicken products. Int J Poult Sci 11: 177-180. https://doi.org/10.3923/ijps.2012.177.180
  44. Midelet G, Carpentier B. 2002. Transfer of microorganisms, including Listeria monocytogenes, from various materials to beef. Appl Environ Microbiol 68: 4015-4024. https://doi.org/10.1128/AEM.68.8.4015-4024.2002
  45. Boulange-Petermann L, Baroux B, Bellon-Fontaine MN. 1993. The influence of metallic surface wettability on bacterial adhesion. J Adhesion Sci Technol 7: 221-230. https://doi.org/10.1163/156856193X00673
  46. Bryers JD. 1987. Biologically active surfaces: processes governing the formation and persistence of biofilms. Biotechnol Prog 3: 57-68. https://doi.org/10.1002/btpr.5420030202
  47. Stintzi A, Marlow D, Palyada K, Naikare H, Panciera R, Whitworth L, Clarke C. 2005. Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni. Infect Immun 73: 1797-1810. https://doi.org/10.1128/IAI.73.3.1797-1810.2005
  48. Perez-Rodriguez F, Valero A, Carrasco E, Garcia RM, Zurera G. 2008. Understanding and modelling bacterial transfer to foods: A review. Trends Food Sci Technol 19: 131-144. https://doi.org/10.1016/j.tifs.2007.08.003

Cited by

  1. Biofilms on Food Contact Surfaces with Slightly Acidic Electrolyzed Water and the Risk of Biofilm Cells Transfer to Duck Meat vol.81, pp.4, 2018, https://doi.org/10.4315/0362-028X.JFP-17-373