A CHARACTERIZATION OF THE UNIT GROUP IN $\mathbb{Z}[T \times C_2]$

TEVFIK BILGIN, OMER KUSMUS, AND RICHARD M. LOW

Abstract. Describing the group of units $U(\mathbb{Z}G)$ of the integral group ring $\mathbb{Z}G$, for a finite group G, is a classical and open problem. In this note, we show that $U_1(\mathbb{Z}[T \times C_2]) \cong [F_{97} \rtimes F_5] \rtimes [T \times C_2]$, where $T = \langle a, b : a^6 = 1, a^3 = b^2, ba = a^5b \rangle$ and F_{97}, F_5 are free groups of ranks 97 and 5, respectively.

1. Introduction

Given a finite group G and the ring of integers \mathbb{Z}, we denote the integral group ring as $\mathbb{Z}G$. Its elements are all finite formal sums

$$\sum_{g \in G} r_g g, \text{ where } r_g \in \mathbb{Z}.$$

There is a surjective ring homomorphism $\epsilon: \mathbb{Z}G \to \mathbb{Z}$, defined by

$$\sum_{g \in G} r_g g \mapsto \sum_{g \in G} r_g.$$

The ring homomorphism ϵ is called the augmentation map and its kernel $\Delta_{\mathbb{Z}}(G) = \langle g - 1 : g \in G \rangle$ is the augmentation ideal. We will denote the group of units of $\mathbb{Z}G$ by $U(\mathbb{Z}G)$, $U_1(\mathbb{Z}G)$ will denote the units of augmentation one in $U(\mathbb{Z}G)$. Thus, $U_1(\mathbb{Z}G)$ is a normal subgroup of $U(\mathbb{Z}G)$ and $\pm U_1(\mathbb{Z}G) = U(\mathbb{Z}G)$. Observe that $\pm G \leq U(\mathbb{Z}G)$. The elements $\pm G$ are called the trivial units of $\mathbb{Z}G$.

Describing the units of the integral group ring is a classical and difficult problem. Over the years, it has drawn the attention of those working in the areas of algebra, number theory, and algebraic topology. Most descriptions of $U(\mathbb{Z}G)$ in the mathematical literature either give an explicit description of the units, the general structure of $U(\mathbb{Z}G)$, or a subgroup of finite index of the unit group $U(\mathbb{Z}G)$. These results were often obtained by using techniques from representation theory and algebraic number theory.

Received July 4, 2015; Revised September 16, 2015.

2010 Mathematics Subject Classification. Primary 16S34.

Key words and phrases. integral group ring, unit problem.
In 1940, substantial work on the unit problem was done by Graham Higman [5, 6]. He first showed that if $U(ZG) = \pm G$, then $U(G) = \pm G \iff G$ is abelian of exponent $2, 3, 4, 6$ or $G = E \times K$ where K is the quaternion group of order 8 and E is an elementary abelian 2-group. Furthermore, Higman gave a general structure theorem for $U(ZA)$, where A is a finite abelian group. Other results include: A_4 and S_4 by Allen-Hobby [1, 2], $L_2(q)$ by Passman-Smith [21], $G = C_p \times C_q$, where q is a prime dividing $p - 1$ by Galovitch-Reiner-Ullom [4], $|G| = p^3$ by Ritter-Sehgal [23], and $U(ZG^*)$ by Hughes-Pearson [7]. Jespers and Parmenter [10] gave a more explicit description of $U(ZS_3)$. In 1993, Jespers and Parmenter [11] completed the description of $U(ZG)$ for all groups of order 16. Jespers [9], in 1995, gave a description of $U(ZG)$, for the dihedral group of order 12 and for $G = D_5 \times C_2$. More recently, Bilgin [3] gave a characterization of $U_1(ZC_{12})$. Kusmus and Denizler [15] gave a construction of $U(ZG^*)$. Kelebek and Bilgin [14] described the structure of $U_1(ZC_n \times K_4)$. The interested reader is directed to Sehgal’s [24] comprehensive survey on the unit problem in integral group rings.

In [17, 18], a general algebraic framework was developed to study $U(ZG^*)$, where $G^* = G \times C_2$, with p prime. In the following sections of this note, we focus on the case where $p = 2$ and then resolve a conjecture found in [17].

2. $U(ZG^*)$

Here, we obtain a result which helps us to answer the following question: Assuming that we have a good description of $U(ZG)$, can we obtain a description of $U(ZG^*)$, where $G^* = G \times C_2$?

Let $G^* = G \times \langle x \rangle$, $x^2 = 1$, with $|G| = n$. Decomposing G^* into two cosets, we have that $G^* = G \cup xG = \{g, g_1, \ldots, g_n, xg_1, \ldots, xg_n\}$. Thus, $ZG^* = ZG \oplus xZG$, a direct sum of abelian groups. Here, the equal sign denotes equality as sets. Now, consider the surjective group homomorphism $\pi : G^* \rightarrow G$ defined by $g \mapsto g, x \mapsto 1$. This induces a ring homomorphism $\pi : ZG^* \rightarrow ZG$; where $\pi(P_1 + xP_2) = P_1 + P_2$, and $P_1, P_2 \in ZG$. At the ring level, $\text{Ker}(\pi) = K^* = (x - 1)ZG$. So, we have the sequence of maps

$$K^* \xrightarrow{i} ZG^* \xrightarrow{\pi} ZG.$$

Restricting π to the group of units, we obtain the split exact sequence of groups:

$$K \xrightarrow{i} U(ZG^*) \xrightarrow{\pi} U(ZG),$$

where $K = \text{Ker}(\pi)$. Hence, $U(ZG^*) = K \times U(ZG)$. Note that $K = U(ZG^*) \cap (1 + K^*)$. Thus, a unit in K has the form $1 + (x - 1)P$, where $P \in ZG$, and has an inverse $1 - (x - 1)Q$, where $Q \in ZG$.

Also, let us consider the surjective ring homomorphism $\rho : ZG \rightarrow Z_2G$, where ρ reduces the coefficients modulo 2. The kernel of ρ, say M^* (as an ideal), is $M^* = 2ZG$. Thus, we have the following sequence of maps:

$$M^* \xrightarrow{i} ZG \xrightarrow{\rho} Z_2G.$$

Furthermore, ρ induces the following exact sequence of groups, which does not necessarily split:

$$M \xrightarrow{i} U(ZG) \xrightarrow{\rho} U(Z_2G),$$

where M is the kernel of the group homomorphism ρ. Observe that $M = U(ZG) \cap (1 + M^\ast)$. Thus, a unit in M has the form $1 + 2P$, where $P \in ZG$ and has an inverse $1 + 2Q$, where $Q \in ZG$. Notice that here at the group level, ρ is not necessarily surjective.

Since $G^* = G \times \langle x \rangle$ and $x^2 = 1$, we have the group homomorphism $\sigma : G^* \to U(ZG)$, where $\sigma(g) = g$ and $\sigma(x) = -1$. This extends to a ring homomorphism $\sigma : ZG^* \to ZG$. So, we have the following diagram of rings:

$$K^* \xrightarrow{i} ZG^* \xrightarrow{\pi} ZG$$

$$\sigma \downarrow \quad \sigma \downarrow \quad \rho \downarrow$$

$$M^* \xrightarrow{i} ZG \xrightarrow{\rho} Z_2G.$$

Observe that $\rho \circ \pi = \rho \circ \sigma$. Hence, $\sigma(K^*) \subseteq M^*$. Note that σ maps the element $1 + (x - 1)P$ to the element $1 - 2P$ of M. Thus, $\sigma(K) \subseteq M$.

Lemma 2.1. Let $G^* = G \times \langle x \rangle$, where x has order 2, $u = 1 + (x - 1)P$, $v = 1 + (x - 1)Q$, where $P, Q \in ZG$. Then u and v are multiplicative inverses of each other in $K \iff 1 - 2P$ and $1 - 2Q$ are multiplicative inverses of each other in $U(ZG)$.

Proof. Let $u, v \in K$; with $uv = 1$. It is straightforward to see that $uv = 1 + (x - 1)(P + Q - 2PQ)$.

Hence, $uv = 1 \iff (x - 1)(P + Q - 2PQ) = 0$

$\iff (2PQ - P - Q) + (P + Q - 2PQ)x = 0$

$\iff 2PQ - P - Q = 0$

$\iff 4PQ - 2P - 2Q = 0$

$\iff 1 - 2P - 2Q + 4PQ = 1$

$\iff (1 - 2P)(1 - 2Q) = 1$. \qed

Lemma 2.2. The map $\sigma : K \to M$ is an isomorphism of groups.

Proof. Note that σ maps the element $1 + (x - 1)P$ of K to the element $1 - 2P$ of M. It is then easy to show that σ is injective. It follows from Lemma 2.1 that σ is surjective. \qed

Summarizing, we have the following diagram of groups:

$$K \xrightarrow{i} U(ZG^*) \xrightarrow{\pi} U(ZG)$$

$$\sigma \downarrow \quad \sigma \downarrow \quad \rho \downarrow$$

$$M \xrightarrow{i} U(ZG) \xrightarrow{\rho} U(Z_2G).$$
Theorem 2.3. \(U(\mathbb{Z}G^*) = K \rtimes U(\mathbb{Z}G) \cong M \rtimes U(\mathbb{Z}G)\).

Proof. The elements of the semi-direct product \(M \rtimes U(\mathbb{Z}G)\) should be viewed as ordered pairs \((a, w)\), where \(a \in M\) and \(w \in U(\mathbb{Z}G)\). If \(k \in K\) and \(w \in U(\mathbb{Z}G)\), then the isomorphism maps \(kw\) to \((\sigma(k), w)\) with the action of \(U(\mathbb{Z}G)\) on \(M\) induced by conjugation in \(U(\mathbb{Z}G)\). □

The problem of describing \(U(\mathbb{Z}G^*)\) has been reduced to the problem of describing \(M\). In the next section, we apply Theorem 2.3 and resolve a conjecture involving \(U(\mathbb{Z}G^*)\), where \(G^*\) is a particular non-abelian group of order 24.

3. Resolution of a conjecture

It was shown by Jespers [8] that there are only four finite groups \(G\) with the property that \(G\) has a non-abelian free normal complement in \(U_1(\mathbb{Z}G)\), namely \(G = S_3, D_4\) (the dihedral group of order 8), \(P = \langle a, b : a^4 = 1 = b^5, bab^{-1}a^{-1} = a^2 \rangle\), and the non-abelian group \(T\) (of order 12) described by the presentation \(T = \langle a, b : a^6 = 1, a^3 = b^2, ba = a^5b \rangle\).

In [9, 11, 17], the structure of \(U(\mathbb{Z}[G \times C_2])\) is determined for \(G = S_3, D_4\) and \(P\). In this section, we disprove the following conjecture, first posed in [17]:

Conjecture. Let \(T^* = T \times C_2\), where \(T = \langle a, b : a^6 = 1, a^3 = b^2, ba = a^5b \rangle\). Then, \(U_1(\mathbb{Z}T^*) \cong [F_{33} \times F_{35}] \rtimes T^*\), where \(F_i\) is a free group of rank \(i\).

This is certainly a plausible conjecture. Later, it was shown in [12] that \(U(\mathbb{Z}[T \times C_2])\) is commensurable with a free-by-free group. We will show that if \(F_{33}\) is replaced with \(F_{27}\), then a correct result is obtained.

In 1993, Parmenter [20] showed that \(U_1(\mathbb{Z}T) = V \rtimes T\), where \(V = \langle v_1, v_2, v_3, v_4, v_5 \rangle\) is a free group of rank five. He also gave the generators of \(V\) to be:

\[
\begin{align*}
v_1 &= 1 + (1 + a^3)(-a^2 + b) + (1 - a^2), \\
v_2 &= 1 + (1 + a^3)(-a^2 + b)(1 - a^2), \\
v_3 &= 1 + (1 + a^3)(-a^2 + b)(1 - a^2), \\
v_4 &= 1 + [1 + (1 + a^3)a^2(a^2 + ba)^2](1 - a^2), \\
v_5 &= 1 + [-1 - a^2 + (1 + a^3)a(1 - a - 2ba)](1 - a^2).
\end{align*}
\]

Let us determine \(\rho(V)\). It is straightforward to verify the following facts. First, \(\rho(v_i)\rho(v_j) = \rho(v_j)\rho(v_i)\), where \(1 \leq i, j \leq 3\). Also, \(\rho(v_1)^2 = \rho(v_2)^2 = \rho(v_3)^2 = 1\) and thus, \(E = \langle \rho(v_1), \rho(v_2), \rho(v_3) \rangle \cong C_2 \times C_2 \times C_2\). Now, calculations show that \(a^2\rho(v_1)a^4 = \rho(v_2), a^2\rho(v_2)a^4 = \rho(v_3), a^2\rho(v_3)a^4 = \rho(v_1)\), and \([\rho(v_1)]^3a^4 = \rho(v_5)\). Thus, \(\langle a^2, \rho(v_1) \rangle = \langle a^2, \rho(v_2) \rangle = \langle a^2, \rho(v_3) \rangle = \rho(V)\).

Lemma 3.1. \(\rho(V) = E \rtimes \langle a^2 \rangle, \) a group of order 24.

Proof. Since \(E = \langle \rho(v_1), \rho(v_2), \rho(v_3) \rangle\) is normalized by \(\rho(v_1), \rho(v_2), \rho(v_3)\), and \(a^2\), we have that \(E \unlhd \rho(V)\). So, \(E \cdot \langle a^2 \rangle \leq \rho(V)\). In fact, \(E \cdot \langle a^2 \rangle = \rho(V)\) and
Lemma 3.2. \(\rho[U_1(ZT)] = E \times T \).

Proof. Clearly, \(\rho[U_1(ZT)] = \rho(V \times T) = \rho(V) \cdot T \). Since \(E \leq \rho(V) \), we have that \(\rho[U_1(ZT)] = E \cdot T \). Since \(ap(v_1)a^5 = \rho(v_3), ap(v_2)a^5 = \rho(v_2), ap(v_2)a^7 = \rho(v_1), b\rho(v_1)b^3 = \rho(v_1), b\rho(v_2)b^3 = \rho(v_3), b\rho(v_3)b^3 = \rho(v_2) \), we see that \(E \) is normalized by \(T \). Note that \(E \cap T = 1 \). Hence, the lemma is established.

A remark should be made at this point. Since \(\rho[U_1(ZT)] \) has order 96, \(|\rho(V)| = 24 \), and \(|T| = 12 \), this implies that \(|\rho(V) \cap T| = 3 \). But \(\langle a^2 \rangle \leq \rho(V) \cap T \), where the order of \(a^2 \) is 3. Hence, \(\rho(V) \cap T = \langle a^2 \rangle \). Now, we have the diagram:

\[
\begin{array}{cccc}
K & \xrightarrow{\iota} & U(ZT^*) & \xrightarrow{\pi} & U(ZT) \\
\cong & \downarrow & \sigma & \downarrow & \rho \\
M & \xrightarrow{\iota} & U(ZT) & \xrightarrow{\rho} & U(Z_2T) \\
\downarrow & \uparrow & \downarrow & \uparrow & \downarrow \\
M^+ & \xrightarrow{\iota} & U_1(ZT) &\xrightarrow{\text{onto}} & E \times T \\
\downarrow & \uparrow & \downarrow & \uparrow & \downarrow \\
M^+ \cap V & \xrightarrow{\iota} & V & \xrightarrow{\text{onto}} & E \times \langle a^2 \rangle.
\end{array}
\]

Lemma 3.3. \(\rho(V) = \langle \rho(v_1), \rho(v_2), \rho(v_3), \rho(v_4) \rangle = \{ [\rho(v_1)]^{i_1} : [\rho(v_2)]^{i_2}, [\rho(v_3)]^{i_3}, [\rho(v_4)]^{i_4} : 0 \leq i_1, i_2, i_3, i_4 \leq 1; 0 \leq i_4 \leq 2 \} \). Furthermore, this canonical representation is unique.

Proof. Note that \(\rho(V) = \langle \rho(v_1), \rho(v_2), \rho(v_3), \rho(v_4) \rangle = \langle \rho(v_1), \rho(v_2), \rho(v_3), \rho(v_4) \rangle \). Also, calculations show the following:

\[
\begin{align*}
\rho(v_4)\rho(v_1) &= \rho(v_2)a^2\rho(v_1) = \rho(v_2)a^2 = \rho(v_2), \\
\rho(v_4)\rho(v_2) &= \rho(v_2)a^2\rho(v_2) = \rho(v_2)\rho(v_3)a^2 = \rho(v_2)\rho(v_3)\rho(v_2) = \rho(v_3)\rho(v_4), \\
\rho(v_4)\rho(v_3) &= \rho(v_2)a^2\rho(v_3) = \rho(v_2)\rho(v_1)a^2 = \rho(v_2)\rho(v_1)\rho(v_2) = \rho(v_1)\rho(v_4), \\
\rho(v_4)^2\rho(v_1) &= \rho(v_3)\rho(v_4)^2, \\
\rho(v_4)^2\rho(v_2) &= \rho(v_1)\rho(v_4)^2, \\
\rho(v_4)^2\rho(v_3) &= \rho(v_2)\rho(v_4)^2, \\
\rho(v_4)^2\rho(v_4) &= \rho(v_1)\rho(v_4)^2, \\
\rho(v_4)^3\rho(v_1) &= \rho(v_2)\rho(v_4)^3, \\
\rho(v_4)^3\rho(v_2) &= \rho(v_1)\rho(v_4)^3, \\
\rho(v_4)^3\rho(v_3) &= \rho(v_4)^3, \\
\rho(v_4)^3\rho(v_4) &= \rho(v_2)\rho(v_4)^3, \\
\rho(v_4)^4\rho(v_1) &= \rho(v_4)\rho(v_4)^3\rho(v_1) = \rho(v_1)\rho(v_3)\rho(v_4), \\
\rho(v_4)^4\rho(v_2) &= \rho(v_4)\rho(v_4)^3\rho(v_2) = \rho(v_1)\rho(v_2)\rho(v_4), \\
\rho(v_4)^4\rho(v_3) &= \rho(v_4)\rho(v_4)^3\rho(v_3) = \rho(v_4)\rho(v_4)^3\rho(v_3) = \rho(v_1)\rho(v_2)\rho(v_4).
\end{align*}
\]
\[\rho(v_4)^4 \rho(v_3) = \rho(v_4) \rho(v_3)^3 \rho(v_3) = \rho(v_2) \rho(v_3) \rho(v_2), \]
\[\rho(v_4)^3 \rho(v_1) = \rho(v_4) \rho(v_2) \rho(v_3)^2 \rho(v_3) = \rho(v_1) \rho(v_2) \rho(v_3)^2, \]
\[\rho(v_4)^3 \rho(v_2) = \rho(v_1) \rho(v_2) \rho(v_3)^2 \rho(v_3) = \rho(v_1) \rho(v_2) \rho(v_3)^2, \]
\[\rho(v_4)^3 \rho(v_3) = \rho(v_1) \rho(v_2) \rho(v_3)^2 \rho(v_3) = \rho(v_1) \rho(v_2) \rho(v_3)^2. \]

Thus, every word in \(\rho \) can be put into the canonical form \([\rho(v_1)]^{i_1} \cdot [\rho(v_2)]^{i_2} \cdot [\rho(v_3)]^{i_3} \cdot [\rho(v_4)]^{i_4} \), where \(0 \leq i_1, i_2, i_3 \leq 1 \) and \(0 \leq i_4 \leq 2 \). This representation is unique, since \(|\rho(V)| = 24 \). □

Lemma 3.4. Let \(w(\rho(v_1), \rho(v_2), \rho(v_3)) \in E, t \in T \), with \(w(\rho(v_1), \rho(v_2), \rho(v_3)) \cdot t = 1 \). Then \(t = 1 \).

Proof. Suppose that \(w(\rho(v_1), \rho(v_2), \rho(v_3)) \cdot t = 1 \). Then, we have \(w(\rho(v_1), \rho(v_2), \rho(v_3)) = t^{-1} \in T \) and \(w(\rho(v_1), \rho(v_2), \rho(v_3)) \in E \). This implies that \(w(\rho(v_1), \rho(v_2), \rho(v_3)) \in E \). Thus, \(w(\rho(v_1), \rho(v_2), \rho(v_3)) = 1 \), which implies that \(t^{-1} = 1 \). Hence, \(t = 1 \). □

Lemma 3.5. \(M^+ \leq V \rtimes \langle a^2 \rangle \).

Proof. Suppose that \(w(v_1, v_2, v_3, v_4, v_5) \cdot t \in M^+ \), where \(t \in T \). This implies that \(\rho(w(v_1, v_2, v_3, v_4, v_5) \cdot t) = 1 \). By Lemma 3.3, we have that \(\langle \rho(v_1) \rangle^{i_1} \cdot [\rho(v_2)]^{i_2} \cdot [\rho(v_3)]^{i_3} \cdot [\rho(v_4)]^{i_4} \cdot t = 1 \), where \(0 \leq i_1, i_2, i_3 \leq 1, 0 \leq i_4 \leq 2; t \in T \). Now, \(\langle \rho(v_1) \rangle^{i_1} \cdot [\rho(v_2)]^{i_2} \cdot [\rho(v_3)]^{i_3} \cdot [\rho(v_4)]^{i_4} \) has three possible forms:

\[
\begin{align*}
\rho(v_1)^{i_1} \cdot \rho(v_2)^{i_2} \cdot \rho(v_3)^{i_3} \cdot \rho(v_4)^{i_4}, & \quad \text{if } i_4 = 1; \\
\rho(v_1)^{i_1} \cdot \rho(v_2)^{i_2} \cdot \rho(v_3)^{i_3}, & \quad \text{if } i_4 = 0.
\end{align*}
\]

Using Lemma 3.4, we have \(\langle \rho(v_1) \rangle^{i_1} \cdot [\rho(v_2)]^{i_2} \cdot [\rho(v_3)]^{i_3} \cdot [\rho(v_4)]^{i_4} \cdot t = 1 \) implies that \(t \in \langle a^2 \rangle \). □

Lemma 3.6. \(M^+ \) is a free group of rank 97.

Proof. Since \(M^+ \leq \rho^{-1}[E \rtimes T] \), where \(E = \langle \rho(v_1), \rho(v_2), \rho(v_3) \rangle \cong C_2 \times C_2 \times C_2 \), we see that \(M^+ \) consists of the elements of the form

\[
\rho^{-1} \rho(v_1)^{j_1} \rho(v_2)^{j_2} \rho(v_3)^{j_3} \cdot t,
\]

where \(0 \leq j_1, j_2, j_3 \leq 1 \) and \(t \in T \). Since \(M^+ \) is an appropriate kernel of \(\rho \), then \(\rho(M^+) = 1 \). If we consider an element in \(M^+ \) as

\[
\alpha = \rho^{-1} \rho(v_1)^{j_1} \rho(v_2)^{j_2} \rho(v_3)^{j_3} \cdot t,
\]

we see that \(\rho(\alpha) = \rho(v_1)^{j_1} \rho(v_2)^{j_2} \rho(v_3)^{j_3} \cdot t = 1 \). By Lemma 3.4, \(t = 1 \). This implies that \(M^+ \) consists of elements of the form

\[
\rho^{-1} \rho(v_1)^{j_1} \rho(v_2)^{j_2} \rho(v_3)^{j_3} \in V.
\]

Thus, \(M^+ \leq V \). Since \(V \) is a free group, the Nielsen-Schreier Theorem states that \(M^+ \) is a free group. Note that \(M^+ \) is a free group. Now, consider the induced isomorphism \(\tilde{\rho} : M^+ \rtimes V \to E \rtimes \langle a^2 \rangle \), which implies that \([V : M^+ \cap V] = [V : \)
$M^+ = 24$. Since V is a free group of rank 5, this implies that M^+ is a free group of rank $(24)(5) - 24 + 1 = 97$.

Theorem 3.7. Let $T^* = T \times C_2$, where $T = \langle a, b : a^6 = 1, a^3 = b^2, ba = a^5b \rangle$. Then, $U_1(ZT^*) \cong [F_97 \rtimes F_5] \rtimes T^*$, where F_i is a free group of rank i.

Proof. Invoking Theorem 2.3, we obtain

$$U_1(Z(T \times C_2)) = K \rtimes (V \times T) \cong M \rtimes (V \times T) = [M^+ \rtimes C_2] \rtimes (V \times T) = [F_97 \rtimes F_5] \rtimes (T \times C_2),$$

where F_i is a free group of rank i.

Acknowledgments. The authors are grateful for the valuable comments made by the referee.

References

[16] Y. Li, Units of $Z(G \times C_2)$, Quaestiones Mathematicae 21 (1998), 201–218.

Tevfik Bilgin
Department of Mathematics
Fatih University
Istanbul, Turkey
E-mail address: tbilgin@fatih.edu.tr

Omer Kusmus
Department of Mathematics
Yüzyünlü Yal University
Van, Turkey
E-mail address: omerkusmus@yyu.edu.tr

Richard M. Low
Department of Mathematics
San Jose State University
San Jose, CA 95192, USA
E-mail address: richard.low@sjsu.edu