DOI QR코드

DOI QR Code

Synthesis of NaCaLa(MoO4)3:Ho3+/Yb3+ Phosphors via Microwave Sol-Gel Route and Their Upconversion Photoluminescence Properties

  • Lim, Chang Sung (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2016.03.06
  • Accepted : 2016.06.13
  • Published : 2016.07.27

Abstract

$NaCaLa_{1-x}(MoO_4)_3:Ho^{3+}/Yb^{3+}$ ternary molybdates with proper doping concentrations of $Ho^{3+}$ and $Yb^{3+}$ (x = $Ho^{3+}+Yb^{3+}$, $Ho^{3+}$ = 0.05 and $Yb^{3+}$ = 0.35, 0.40, 0.45 and 0.50) were successfully synthesized by microwave sol-gel method. Well-crystallized particles formed after heat-treatment at $900^{\circ}C$ for 16 h showed a fine and homogeneous morphology with particle sizes of $3-5{\mu}m$. Under excitation at 980 nm, the UC intensities of the doped samples exhibited strong yellow emissions based on the combination of strong emission bands at 520-nm and 630-nm emission bands in the green and red spectral regions, respectively. The optimal $Yb^{3+}:Ho{3+}$ ratios were obtained at 9:1 and 10:1, as indicated by the composition-dependent quenching effect of the $Ho^{3+}$ ions. The pump power dependence of the upconversion emission intensity and the Commission Internationale de L'Eclairage chromaticity coordinates of the phosphors were evaluated in detail.

Keywords

References

  1. M. V. DaCosta, S. Doughan and U. J. Krull, Anal. Chim. Acta, 832, 1 (2014). https://doi.org/10.1016/j.aca.2014.04.030
  2. M. Wang, G. Abbineni, A. Clevenger, C. Mao and S. Xu, Nanomed.: Nanotech. Biol. Med., 7, 710 (2011). https://doi.org/10.1016/j.nano.2011.02.013
  3. M. Lin, Y. Zho, S. Wang, M, Liu, Z. Duan, Y. Chen, F. Li, F. Xu and T. Lu, Biotechnol. Adv., 30, 1551 (2012). https://doi.org/10.1016/j.biotechadv.2012.04.009
  4. C. S. Lim, Mater. Res. Bull., 75, 211 (2016). https://doi.org/10.1016/j.materresbull.2015.11.058
  5. C. S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov and V. Atuchin, Phys. Chem. Chem. Phys., 17, 19278 (2015). https://doi.org/10.1039/C5CP03054D
  6. J. Liao, D. Zhou, B. Yang, R. Liu, Q. Zhang and Q. Zhou, J. Lumin., 134, 533 (2013). https://doi.org/10.1016/j.jlumin.2012.07.033
  7. J. Sun, Y. Lan, Z. Xia and H. Du, Opt. Mater., 33, 576 (2011). https://doi.org/10.1016/j.optmat.2010.10.049
  8. C. Guo, H. K. Yang and J. H. Jeong, J. Lumin., 130, 1390 (2010). https://doi.org/10.1016/j.jlumin.2010.02.052
  9. Z. Shan, D. Chen, Y. Yu, P. Huang, F. Weng, H. Lin and Y. Wang, Mater. Res. Bull., 45, 1017 (2010). https://doi.org/10.1016/j.materresbull.2010.04.004
  10. W. Liu, J. Sun, X. Li, J. Zhang, Y. Tian, S. Fu, H. Zhong, T. Liu, L. Cheng, H. Xia, B. Dong, R. Hua, X. Zhang and B. Chen, Opt. Mater., 35, 1487 (2013). https://doi.org/10.1016/j.optmat.2013.03.008
  11. W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang and W. Cao, Sens. Actuator. B Chem., 188, 1096 (2013). https://doi.org/10.1016/j.snb.2013.07.094
  12. J. Tang, C. Cheng, Y. Chen and Y. Huang, J. Alloys Compd,. 609, 268 (2014). https://doi.org/10.1016/j.jallcom.2014.04.134
  13. W. Zhang, J. Li, Y. Wang, J. Long and K. Qiu, J. Alloys Compd., 635, 16 (2015). https://doi.org/10.1016/j.jallcom.2015.02.106
  14. F. Mo, L. Zhou, Q. Pang, F. Gong and Z. Liang, Ceram. Inter., 38, 6289 (2012). https://doi.org/10.1016/j.ceramint.2012.04.084
  15. G. Li, S. Lan, L. Li, M. Li, W. Bao, H. Zou, X. Xu and S. Gan, J. Alloys Compd., 513, 145 (2012). https://doi.org/10.1016/j.jallcom.2011.10.008
  16. J. Liao, H. Huang, H. You, X. Qiu, Y. Li, B. Qui and H. R. Wen, Mater. Res. Bull., 45, 1145 (2010). https://doi.org/10.1016/j.materresbull.2010.05.027
  17. F. Cao, L. Li, Y. Tian and X. Wu, Optics Laser Technol., 55, 6 (2014). https://doi.org/10.1016/j.optlastec.2013.06.016
  18. G. M. Kuz'micheva, D. A. Lis, K. A. Subbotin, V. B. Rybakov and E. V. Zharikov, J. Cryst. Growth, 275, e1835 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.257
  19. X. Lu, Z. You, J. Li, Z. Zhu, G. Jia, B. Wu and C. Tu, J. Alloys Compd., 458, 462 (2008). https://doi.org/10.1016/j.jallcom.2007.04.010
  20. X. Li, Z. Lin, L. Zhang and G. Wang, J. Cryst. Growth, 290, 670 (2006). https://doi.org/10.1016/j.jcrysgro.2006.02.005
  21. Y. K. Voron'ko, K. A. Subbotin, V. E. Shukshin, D. A. Lis, S. N. Ushakov, A. V. Popov and E. V. Zharikov, Opt. Mater., 29, 246 (2009).
  22. H. Lin, X. Yan and X. Wang, J. Sol. State. Chem., 204, 266 (2013). https://doi.org/10.1016/j.jssc.2013.06.020
  23. G. Li, L. Li, M. Li, W. Bao, Y. Song, S. Gan, H. Zou and X. Xu, J. Alloys Compd., 550, 1 (2013). https://doi.org/10.1016/j.jallcom.2012.09.125
  24. Y. Huang, L. Zhou, L. Yang and Z. Tang, Opt. Mater., 33, 777 (2011). https://doi.org/10.1016/j.optmat.2010.12.015
  25. L. Li, W. Zi, G. Li, S. Lan, G. Ji, S. Gan, H. Zou and X. Xu, J. Sol. State Chem., 191, 175 (2012). https://doi.org/10.1016/j.jssc.2012.03.003
  26. Y. Tian, B. Chen, B. Tian, J. Sun, X. Li, J. Zhang, L. Cheng, H. Zhong, Q. Meng, R. Hua, 407, 2556 (2012). https://doi.org/10.1016/j.physb.2012.03.066
  27. J. Zhang, X. Wang, X. Zhang, X. Zhao and X. Liu, L. Peng, Inorg. Chem. Commun., 14, 1723 (2011). https://doi.org/10.1016/j.inoche.2011.07.015
  28. S. W. Park, B. K. Moon, B. C. Choi, J. H. Jeong, J. S. Bae and K. H. Kim, Curr. Appl. Phys., 12, S150 (2012). https://doi.org/10.1016/j.cap.2012.02.048
  29. C. S. Lim, Mater. Chem. Phys., 131, 714 (2012). https://doi.org/10.1016/j.matchemphys.2011.10.039
  30. C. S. Lim, Mater. Res. Bull., 47, 4220 (2012). https://doi.org/10.1016/j.materresbull.2012.09.029
  31. C. S. Lim, Infrared Phys. Technol., 67, 371 (2014). https://doi.org/10.1016/j.infrared.2014.08.018
  32. R. D. Shannon, Acta Cryst., A32, 751 (1976).
  33. F. Anzel, G. Baldacchini, L. Laversenne and G. Boulon, Opt. Mat., 24, 103(2003). https://doi.org/10.1016/S0925-3467(03)00112-5
  34. H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou and S. Xia, J. Phys. Chem. B, 108, 19205 (2004). https://doi.org/10.1021/jp048072q
  35. Y. Xu, Y. Wang, L. Shi, L. Xing and X. Tan, Opt. Laser Technol., 54, 50 (2013). https://doi.org/10.1016/j.optlastec.2013.05.005
  36. X. Li, Q. Nie, S. Dai, T. Xu, L. Lu and X. Zhang, J. Alloys Compd., 454, 510 (2008). https://doi.org/10.1016/j.jallcom.2007.02.143
  37. A. A. Savina, V. V. Atuchin, S. F. Solodovnikov, Z. A. Solodovnikova, A. S. Krylov, E. A. Maximovskiy, M. S. Molokeev, A. S. Oreshonkov, A. M. Pugachev and E. G. Khaikina, J. Solid State Chem., 225, 53 (2015). https://doi.org/10.1016/j.jssc.2014.11.023
  38. V. V. Atuchin, V. G. Grossman, S. V. Adichtchev, N. V. Surovtsev, T. A. Gavrilova and B. G. Bazarov, Opt. Mater., 34, 812 (2012). https://doi.org/10.1016/j.optmat.2011.11.016
  39. V. V. Atuchin, O. D. Chimitova, S. V. Adichtchev, J. G. Bazarov, T. A. Gavrilova, M. S. Molokeev, N. V. Surovtsev and Zh.G. Bazarova, Mater. Lett., 106, 26 (2013). https://doi.org/10.1016/j.matlet.2013.04.039
  40. V. V. Atuchin, O. D. Chimitova, T. A. Gavrilova, M. S. Molokeev, S. J. Kim, N. V. Surovtsev and B. G. Bazarov, J. Cryst. Growth, 318, 683 (2011). https://doi.org/10.1016/j.jcrysgro.2010.09.076
  41. C. S. Lim, Infrared Phys. Technol., 76, 353 (2016). https://doi.org/10.1016/j.infrared.2016.02.012
  42. C. S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov and V. Atuchin, J. Solid State Chem., 228, 160 (2015). https://doi.org/10.1016/j.jssc.2015.04.032