DOI QR코드

DOI QR Code

High Temperature Creep Properties of Al-Al4C3-Al2O3 Alloy by Mechanical Alloying

  • Han, Chang-Suk (Department of Defense Science & Technology, Hoseo University) ;
  • Seo, Han-Byeol (Department of Nanobiotronics, Hoseo University)
  • Received : 2016.05.12
  • Accepted : 2016.06.13
  • Published : 2016.07.27

Abstract

Tensile tests and creep tests were carried out at high temperatures on an Al-$Al_4C_3$ alloy prepared by mechanical alloying technique. The material contains about 2.0% carbon and 0.9% oxygen in mass percent, and the volume fractions of $Al_4C_3$ and $Al_2O_3$ particles are estimated at 7.4 and 1.4%, respectively, from the chemical composition. Minimum creep rate decreased steeply near two critical stresses, ${\sigma}_{cl}$ (the lower critical stress) and ${\sigma}_{cu}$ (the upper critical stress), with decreasing applied stress at temperatures below 723 K. Instantaneous plastic strain was observed in creep tests above a critical stress, ${\sigma}_{ci}$, at each test temperature. ${\sigma}_{cu}$ and ${\sigma}_{ci}$ were fairly close to the 0.2% proof stress obtained by tensile tests at each test temperature. It is thought that ${\sigma}_{cl}$ and ${\sigma}_{cu}$ correspond to the microscopic yield stress and the macroscopic yield stress, respectively. The lower critical stress corresponds to the local yield stress needed for dislocations to move in the soft region within subgrains. The creep strain in the low stress range below 723 K arises mainly from the local deformation of the soft region. The upper critical stress is equivalent to the macroscopic yield stress necessary for dislocations within subgrains or in subboundaries; this stress can extensively move beyond subboundaries under a stress above the critical point to yield a macroscopic deformation. At higher temperatures above 773 K, the influence of the diffusional creep increases and the stress exponent of the creep rate decreases.

Keywords

References

  1. S. Kawamori and T. Machida, Mater. Ttrans., 48, 373 (2007). https://doi.org/10.2320/matertrans.48.373
  2. H. Dutta, A. Sen, J. Bhattacharjee, and S. K. Pradhan, J. Alloys Compd., 493, 666 (2010). https://doi.org/10.1016/j.jallcom.2009.12.184
  3. T. Sakamoto, H. Kurishita, T. Furuno, T. Nagasaka, S. Kobayashi, K. Nakai, S, Matsuo, H. Arakawa, A. Nishimura, and T. Muroga, Mater. Sci. Eng., properties, microstructure and processing. A, Structural Mater., 528, 7843 (2011). https://doi.org/10.1016/j.msea.2011.06.033
  4. H. Reveron, O. Zaafrani, and G. Fantozzi, J. European Ceram. Soc., 30, 1351 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.12.008
  5. F. Dobes, M. Besterci, B. Ballokova, K. Sulleiova, and P. Dymacek, Mater. Sci. & Eng. properties, microstructure and processing. A, Structural Mater., 532, 567 (2012). https://doi.org/10.1016/j.msea.2011.10.122
  6. K. Higashi, T. Okada, T. Mukai, and S. Tanimura, Mater. Sci. & Eng. properties, microstructure and processing. A, Structural Materials, 159, L1 (1992). https://doi.org/10.1016/0921-5093(92)90407-R
  7. D. Gould, P. B. Hirsch and F. J. Humphreys, Phil. Mag., 30, 1353 (1974). https://doi.org/10.1080/14786437408207287
  8. R. W. Evans and B. Wilshire, Mater. Sci. Technol., 3, 701 (1987). https://doi.org/10.1179/mst.1987.3.9.701
  9. J. Rosler and E. Arzt, Acta Metall. Mater., 38, 671 (1990). https://doi.org/10.1016/0956-7151(90)90223-4
  10. E. Arzt and D. S. Wilkinson, Acta Metall. Mater., 34, 1893 (1986). https://doi.org/10.1016/0001-6160(86)90247-6