DOI QR코드

DOI QR Code

Analysis on Mechanism of Wave Attenuation under Wave-Current Interaction

파랑-흐름의 상호작용에 의한 파랑변형 메커니즘 분석

  • 이우동 (국립경상대학교 해양산업연구소) ;
  • 허동수 (국립경상대학교 해양토목공학과)
  • Received : 2016.02.01
  • Accepted : 2016.06.07
  • Published : 2016.08.01

Abstract

In this study, we conducted a numerical simulation using Navier-Stokes Solver (HYMO-WASS-3D) in order to analyze wave attenuation under wave-current interaction found in existing hydraulic experiments. It showed that wave energy and wave height are reduced as the wave propagates in coexisting fields between waves and currents. And the wave attenuation became more serious as the velocity of current and thus turbulence intensity were increased at wave-current coexisting field. As well, the wave attenuation became more serious with lower wave height and shorter period when the wave propagates the same distance under interactions between waves and currents.

본 연구에서는 기존의 수리모형실험에서 나타나는 파랑-흐름 상호작용에 의한 파고감쇠현상을 분석하기 위하여 Navier-Stokes Solver를 이용한 수치시뮬레이션을 수행하였다. 파랑과 흐름이 만날 경우, 유속의 난류성분이 증가하여 난류강도가 커지는 것을 확인하였다. 이것으로부터 파랑이 전파될수록 난류의 영향으로 파랑에너지가 감소하고, 파고가 줄어드는 현상을 이해할 수 있었다. 그리고 흐름의 유속이 증가할수록 난류강도가 증가함으로 파고감쇠효과가 크게 나타났다. 또한 파랑이 동일한 거리를 전파할 때에 파고가 작을수록, 주기가 짧을수록 파고감쇠현상이 심화되는 것을 확인할 수 있었다.

Keywords

References

  1. Baddour, R. E. and Song, S. (1990). On the interaction between waves and currents. Ocean Eng., Vol. 17, pp. 1-21. https://doi.org/10.1016/0029-8018(90)90011-T
  2. Brackbill, J. U., Kothe, D. B. and Zemach, C. (1992). "A continuum model for modeling surface tension." Journal Comp. Phys., Vol. 100, pp. 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
  3. Chawla, A. and Kirby, J. T. (1988). "Experimental study of wave breaking and blocking on opposing currents." Proc. 26th Int. Conf. Coastal Eng., ICCE, Vol. 1, pp. 759-772.
  4. Christensen, E. D. (2006). "Large eddy simulation of spilling and plunging breakers." Coastal Eng., Vol. 53, pp. 463-485. https://doi.org/10.1016/j.coastaleng.2005.11.001
  5. Germano, M., Piomelli, U., Moin, P. and Cabot, W. H. (1991). "A dynamic subgrid-scale eddy viscosity model." Physics of Fluids, Vol. 3, pp. 1760-1765. https://doi.org/10.1063/1.857955
  6. Hur, D. S. and Lee, W. D. (2011). "On generation methods of oblique incidence waves in three-dimensional numerical wave tank with non-reflected system." Journal Korean Society of Coastal and Ocean Eng., Vol. 23, No. 6, pp. 401-406 (in Korean). https://doi.org/10.9765/KSCOE.2011.23.6.401
  7. Hur, D. S., Lee, W. D. and Cho, W. C. (2012). "Three-dimensional flow characteristics around permeable submerged breakwaters with open inlet." Ocean Eng., Vol. 44, pp. 100-116. https://doi.org/10.1016/j.oceaneng.2012.01.029
  8. Isaasson, M. and Cheung, K. F. (1993). "Time-domain solution for wave-current interactions with a two-dimensional body." Appl. Ocean Res., Vol. 15, pp. 39-52. https://doi.org/10.1016/0141-1187(93)90031-R
  9. Iwasaki, T. and Sato, M. (1971). "Energy damping of wave propagating against currents (2)." Proc. Coastal Eng. Conf., JSCE, Vol. 18, pp. 55-59 (in Japanese).
  10. Kemp, P. H. and Simons, R. R. (1982). "The interaction between waves and a turbulent current: Waves Propagating with the Current." Journal of Fluid Mechanics, Vol. 116, pp. 227-250. https://doi.org/10.1017/S0022112082000445
  11. Kemp, P. H. and Simons, R. R. (1983). "The interaction of waves and a turbulent current: Waves Propagating Against the Current." Journal of Fluid Mechanics, Vol. 130, pp. 73-89. https://doi.org/10.1017/S0022112083000981
  12. Lee, K. H., Mizutani, N., Komatsu, K. and Hur, D. S. (2006). "Experimental study on wave-current interaction." Proc. 16th Int. Offshore and Polar Eng. Conf., ISOPE, pp. 600-606.
  13. Lee, W. D. and Hur, D. S. (2014). "Development of a 3-d coupled hydro-morphodynamic model between numerical wave tank and morphodynamic model under wave-current interaction." Journal Korean Society of Civil Eng., KSCE, Vol. 34, pp. 1463-1476 (in Korean). https://doi.org/10.12652/Ksce.2014.34.5.1463
  14. Lee, W. D., Mizutani, N. and Hur, D. S. (2011). "Effect of crossing angle on interaction between wave and current in the river mouth." Journal Japan Society of Civil Eng., Ser. B3 (Ocean Eng.), Vol. 67, pp. 256-261 (in Japanese).
  15. Lilly, D. K. (1991). "A proposed modification of the Germano subgrid-scale closure method." Phy. Fluids, Vol. 4, pp. 633-635.
  16. Lin, M. C. and Hsiao, S. S. (1994). "Boundary element analysis of wave-current interaction around a large structure." Eng. Analysis with Boundary Elements, Vol. 14, pp. 325-334. https://doi.org/10.1016/0955-7997(94)90062-0
  17. Mizutani, N., Hur, D. S. and Maeda, Y. (2002). "Numerical analysis of nonlinear wave-current interaction in side harbor." Proc. Coastal Eng. Conf., JSCE, Vol. 49, pp. 51-55 (in Japanese).
  18. Mizutani, N., Lee, K. H., Komatsu, K. and Hur, D. S. (2005). "Fundamental study on wave-current interaction." Proc. Coastal Eng. Conf., JSCE, Vol. 21, pp. 307-312 (in Japanese).
  19. Olabarrieta, M., Medina, R. and Castanedo, S. (2010). "Effects of wave-current interaction on the current profile." Coastal Eng., Vol. 57, pp. 643-655. https://doi.org/10.1016/j.coastaleng.2010.02.003
  20. Sakai, S. and Saeki, H. (1984). "Effects of opposing current on wave transformation on sloping sea bed." Proc. 19th Int. Conf. on Coastal Eng., ICCE, pp. 1219-1232.
  21. Son, S. and Lynett, P. J. (2014). "Interaction of dispersive water waves with weakly sheared currents of arbitrary profile." Coastal Eng., Vol. 90, pp. 64-84. https://doi.org/10.1016/j.coastaleng.2014.04.009
  22. Teles, M. J., Pires-Silva, A. A. and Benoit, M. (2013). "Numerical modelling of wave current interactions at a local scale." Ocean Modelling, Vol. 68, pp. 72-87. https://doi.org/10.1016/j.ocemod.2013.04.006
  23. Umeyama, M. (2005). "Reynolds stresses and velocity distributions in a wave-current coexisting environment." Journal Waterway, Port, Coastal, Ocean Eng., Vol. 131. pp. 203-212. https://doi.org/10.1061/(ASCE)0733-950X(2005)131:5(203)
  24. Zhao, R. and Faltinsen, O. M. (1988). "Interaction between waves and current on a two-dimensional body in the free surface." Appl. Ocean Res., No. 2, pp. 87-99.

Cited by

  1. Wave Modeling considering Water Level Changes and Currents Effects vol.28, pp.6, 2016, https://doi.org/10.9765/KSCOE.2016.28.6.383