DOI QR코드

DOI QR Code

Saddlepoint approximations for the risk measures of linear portfolios based on generalized hyperbolic distributions

일반화 쌍곡분포 기반 선형 포트폴리오 위험측도에 대한 안장점근사

  • Na, Jonghwa (Department of Information and Statistics, Chungbuk National University)
  • Received : 2016.05.09
  • Accepted : 2016.07.13
  • Published : 2016.07.31

Abstract

Distributional assumptions on equity returns play a key role in valuation theories for derivative securities. Elberlein and Keller (1995) investigated the distributional form of compound returns and found that some of standard assumptions can not be justified. Instead, Generalized Hyperbolic (GH) distribution fit the empirical returns with high accuracy. Hu and Kercheval (2007) also show that the normal distribution leads to VaR (Value at Risk) estimate that significantly underestimate the realized empirical values, while the GH distributions do not. We consider saddlepoint approximations to estimate the VaR and the ES (Expected Shortfall) which frequently encountered in finance and insurance as measures of risk management. We supposed GH distributions instead of normal ones, as underlying distribution of linear portfolios. Simulation results show the saddlepoint approximations are very accurate than normal ones.

자산의 수익에 대한 분포 가정은 파생 상품의 가치 평가에 매우 중요한 역할을 한다. Elberlein과 Keller (1995)는 오랜 기간에 걸친 주식 자료를 바탕으로 혼합 자산의 분포에 대한 다양한 검정을 수행한 결과, 정규성 가정이 만족되지 않음을 확인한 바 있으며, 일반화 쌍곡분포가 보다 현실을 잘 반영하는 모형임을 확인하였다. 또한, Hu와 Kercheval (2007)은 6년간의 S&P500 지수의 분석에서 정규분포는 VaR (value at risk)을 과소 추정하는 반면, 일반화 쌍곡분포는 잘 적합함을 확인하였다. 일반화 쌍곡분포는, Barndorff-Nielsen (1977)이 처음 소개한 분포로, 첨도가 큰 특징을 가지는 금융 자료의 적합에 유용한 분포이다. 본 연구에서는 일반화 쌍곡분포를 모분포로 하는 선형 포트폴리오의 위험측도를 추정한다. 위험측도로는 VaR과 ES (expected shortfall)를 고려하였으며, 추정 방법으로는 안장점근사를 사용하였다. 안장점근사는 소표본에서도 정확한 근사를 제공하는 근사법으로 알려져 있다. 모의실험을 통해 위험측도에 대한 안장점근사의 정도가 매우 우수함을 확인하였다.

Keywords

References

  1. Antonov, A., Mechkov, H. and Misirpashaev, T. (2005). Analytical techniques for synthetic CDOs and credit default risk measures, Technical Report, Numerix, New York.
  2. Artzner, P., Delbaen, F., Eber, J. and Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203-228. https://doi.org/10.1111/1467-9965.00068
  3. Barndorff-Nielsen, O. E. (1977). Exponentially decreasing distributions for the logarithm of the particle size. Proceedings of the Royal Society, London A. Mathematical and Physical Sciences, 353, 401-419. https://doi.org/10.1098/rspa.1977.0041
  4. Barndorff-Nielsen, O. E. and Blaesild, P. (1981). Hyperbolic distributions and ramications: Contributions to theory and application. Statistical Distributions in Scientic Work, 4, 19-44.
  5. Barndorff-Nielsen, O. E., Blaesild, P., Jensen, J. L. and Sorensen, M. (1985). The fascination of sand, In A.C. Atkinson, S. E. Fienberg (eds), A Celebration of Statistics, 57-87, Springer, New York.
  6. Barndorff-Nielsen, O. E., Jensen, J. L. and Sorensen, M. (1989). Wind shear and hyperbolic distributions. Boundary-Layer Meteorology, 49, 417-431. https://doi.org/10.1007/BF00123653
  7. Barndorff-Nielsen, O. E. and Cox, D. R. (1979). Edgeworth and Saddlepoint approximations with statistical applications. Journal of the Royal Statistical Society B, 41, 279-312.
  8. Daniels, H. E. (1954). Saddlepoint approximations in statistics. The Annals of Mathematical Statistics, 25, 631-650. https://doi.org/10.1214/aoms/1177728652
  9. Daniels, H. E. (1987). Tail probability approximations. International Statistical Review, 55, 37-48. https://doi.org/10.2307/1403269
  10. Eberlein, E. and Keller, U. (1995). Hyperbolic distributions in finance. Bernoulli, 1, 281-299. https://doi.org/10.2307/3318481
  11. Frey, R. and McNeil, A. (2002). VaR and expected shortfall in portfolios of dependent credit risks: conceptual and practical insights. Journal of Banking and Finance, 26, 1317-1334. https://doi.org/10.1016/S0378-4266(02)00265-0
  12. Hu, W. (2005). Calibration of multivariate generalized hyperbolic distributions using the EM algorithm, with applications in risk management, portfolio optimization, and portfolio credit risk, Ph.D. Thesis, Florida State University.
  13. Hu, W. and Kercheval, A. (2007). Risk management with generalized hyperbolic distributions, Proceeding of the Fourth IASTED International Conference on Financial Engineering and Applications, 19-24.
  14. Huang, X. and Oosterlee C. W. (2009). Saddlepoint approximations for expectations, Delft University of Technology, Faculty of Electrical and Engineering, Mathematics and Computer Science, Delft Institute of Applied Mathematics, Netherlands.
  15. Luethi, D. and Breymann, W. (2011). R package 'ghyp', http://cran.r-project.org.
  16. Lugannani, R. and Rice, S. (1980). Saddlepoint approximations for the distribution of the sum of independent random variables. Advances in Applied Probability, 12, 475-490. https://doi.org/10.1017/S0001867800050278
  17. Na, J. H. and Yu, H. K. (2013). Saddlepoint approximation for distribution function of sample mean of skew-normal distribution. Journal of the Korean Data & Information Science Society, 24, 1211-1219. https://doi.org/10.7465/jkdi.2013.24.6.1211
  18. Rogers, L. C. G. and Zane, O. (1999). Saddlepoint approximations to option prices. The Annals of Applied Probability, 9, 493-503. https://doi.org/10.1214/aoap/1029962752
  19. Scott, D. (2009). R package 'HyperbolicDist', http://cran.r-project.org.
  20. Scott, D. (2015). R package 'GeneralizedHyperbolic', http://cran.r-project.org.
  21. Yang, J., Hurd, T. and Zhang, X. (2006). Saddlepoint approximation method for pricing CDOs, Journal of Computational Finance, 10, 1-20.
  22. Yu, H. K. and Na, J. H. (2014). Saddlepoint approximations for the risk measures of portfolios based on skew-normal risk factors. Journal of the Korean Data & Information Science Society, 25, 1171-1180. https://doi.org/10.7465/jkdi.2014.25.6.1171

Cited by

  1. Transformed Jacobi polynomial density and distribution approximations vol.29, pp.4, 2016, https://doi.org/10.7465/jkdi.2018.29.4.1087