DOI QR코드

DOI QR Code

Comparison study of SARIMA and ARGO models for in influenza epidemics prediction

  • Jung, Jihoon (Department of Statistics, Seoul National University) ;
  • Lee, Sangyeol (Department of Statistics, Seoul National University)
  • Received : 2016.06.24
  • Accepted : 2016.07.13
  • Published : 2016.07.31

Abstract

The big data analysis has received much attention from the researchers working in various fields because the big data has a great potential in detecting or predicting future events such as epidemic outbreaks and changes in stock prices. Reflecting the current popularity of big data analysis, many authors have proposed methods tracking influenza epidemics based on internet-based information. The recently proposed 'autoregressive model using Google (ARGO) model' (Yang et al., 2015) is one of those influenza tracking models that harness search queries from Google as well as the reports from the Centers for Disease Control (CDC), and appears to outperform the existing method such as 'Google Flu Trends (GFT)'. Although the ARGO predicts well the outbreaks of influenza, this study demonstrates that a classical seasonal autoregressive integrated moving average (SARIMA) model can outperform the ARGO. The SARIMA model incorporates more accurate seasonality of the past influenza activities and takes less input variables into account. Our findings show that the SARIMA model is a functional tool for monitoring influenza epidemics.

Keywords

References

  1. Bollen, J., Mao, H. and Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2, 1-8. https://doi.org/10.1016/j.jocs.2010.12.007
  2. Chan, E. H., Sahai, V., Conrad, C. and Brownstein, J. S. (2011). Using web search query data to monitor dengue epidemics: A new model for neglected tropical disease surveillance. PLoS Neglected Tropical Diseases, 5, e1206. https://doi.org/10.1371/journal.pntd.0001206
  3. Cook, S., Conrad C., Fowlkes, A. L. and Mohebbi, M. H. (2011). Assessing Google flu trends performance in the United States during the 2009 influenza vrius A (H1N1) pandemic. PLoS One, 6, e23610. https://doi.org/10.1371/journal.pone.0023610
  4. Ginsberg, J. Mohebbi1, M. H., Patel1, R. S., Brammer, L., Smolinski1, M. S. and Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457, 1012-1014. https://doi.org/10.1038/nature07634
  5. Hwang, S. and Oh, C. (2016). Estimation of the case fatality ratio of MERS epidemics using information on patients' severity condition. Journal of the Korean Data & Information Science Society, 27, 599-607. https://doi.org/10.7465/jkdi.2016.27.3.599
  6. Labrinidis, A. and Jagadish, H. V. (2012). Challenges and opportunities with big data. Proceedings of the VLDB Endowment, 5, 2032-2033. https://doi.org/10.14778/2367502.2367572
  7. Lazer, D., Kennedy, R., King, G. and Vespignani, A. (2014). The parable of Google Flu: Traps in big data analysis. Science, 343, 1203-1205. https://doi.org/10.1126/science.1248506
  8. Lee, S. and Kim, B. (2013). Dependence structure analysis of KOSPI and NYSE based on time-varying copula models. Journal of the Korea & Information Science Society, 24, 1477-1488. https://doi.org/10.7465/jkdi.2013.24.6.1477
  9. Lee, S., Lee, J. and Noh, J. (2013). Maximum entropy test for infinite order autoregressive models. Journal of the Korean Data & Information Science Society, 24, 637-642. https://doi.org/10.7465/jkdi.2013.24.3.637
  10. Overview of Influenza Surveillance in the United States. (2016). Retrived from http://www.cdc.gov/flu/weekly/overview.htm.
  11. Polgreen, P. M., Chen, Y., Pennock, D. M. and Nelson, F. D. (2008). Using internet searches for influenza surveillance. Clinical Infectious Diseases, 47, 1443-1448. https://doi.org/10.1086/593098
  12. Preis, T., Moat, H. S. and Stanley H. E. (2013). Quantifying trading behavior in financial markets using Google trends. Scientific Reports, 3, 1684. https://doi.org/10.1038/srep01684
  13. Santillana, M., Nguyen, A. T., Dredze, M., Paul,M. J., Nsoesie, E. O. and Brownstein, J. S. (2015). Com-bining search, social media, and traditional data sources to improve influenza surveillance. PLoS Computational Biology, 11, e1004513. https://doi.org/10.1371/journal.pcbi.1004513
  14. Santillana, M., Zhang, D. W., Althouse, B. M. and Ayers, J. W. (2014). What can digital disease detection learn from (an external revision to) Google Flu Trends?. American journal of preventive medicine, 47, 314-347. https://doi.org/10.1016/j.amepre.2014.07.015
  15. Wesolowski, A., Buckee, C. O., Bengtsson, L., Wetter, E., Lu, X. and Tatem, A. J. (2014). Commentary: Containing the Ebola outbreak{the potential and challenge of mobile network data. PLOS Currents Outbreaks, 10.1371/currents.outbreaks.0177e7fcf52217b8b634376e2f3efc5e.
  16. Yang, S., Santillana, M. and Kou, S. C. (2015). ARGO: A model for accurate estimation of influenza epidemics using Google search data, arXiv preprint arXiv:1505.00864.

Cited by

  1. 개선된 유전자 역전파 신경망에 기반한 예측 알고리즘 vol.28, pp.6, 2017, https://doi.org/10.7465/jkdi.2017.28.6.1327