DOI QR코드

DOI QR Code

실차시험을 이용한 팬터그래프의 소음기여도 분석

Noise Contribution Analysis of Pantograph Using Real Train Experiment

  • 투고 : 2016.01.13
  • 심사 : 2016.05.24
  • 발행 : 2016.06.30

초록

팬터그래프의 공력소음은 열차가 고속으로 주행할 때 발생하는 소음의 주요한 원인이다. 본 연구에서는 팬터그래프에 의한 공력소음 기여도를 분석하기 위하여 차세대고속열차(HEMU-430X)를 이용하여 시험을 수행하였다. 실제차량에서의 팬터그래프에 의한 소음의 주파수 특성을 분석하기 위하여, 350km/h와 400km/h 주행 시 전체차량의 음장가시화를 144채널 마이크로폰 어레이를 이용하여 수행하였다. 음장가시화 분석결과 팬터그래프의 소음은 250~400Hz 대역의 저주파 소음이 주로 기여함을 확인하였다. 또한 팬터그래프의 소음 기여도를 분석하기 위하여 팬터그래프의 올림 및 내림 시 소음도 차이를 단일 마이크로폰 시험을 통하여 비교분석하였다. 단일 마이크로폰 시험을 통한 팬터그래프 소음의 주요 주파수 특성은 315~400Hz와 1000~1250Hz 대역임을 확인 하였으며 이는 기존의 연구 결과 및 음장가시화 결과와 잘 일치하였다.

Pantograph aerodynamic noise is a major cause of noise that occurs when a train is traveling at high speeds. In this study, in order to analyze the contribution of pantograph aerodynamic noise, real train tests using HEMU-430X were carried out. In order to analyze the frequency characteristic of the noise of the pantograph in an actual vehicle, a sound field visualization has been carried out using a 144-channel microphone array at train speeds of 350 and 400km/h. As a result, it was confirmed that the low frequency noise in the 250~400Hz bandwidth provides the main contribution to the pantograph noise. And, in order to estimate the noise contribution of the pantograph, the noise level difference between cases in which the pantograph is ascending and those in which it is descending were compared in single microphone experiments. The frequency analysis in the single microphone tests showed that the bands of 315~400Hz and 1000~1250Hz are the main frequency characteristics of pantograph noise. These results show quite good agreement with those of previous studies and with results of sound field visualization.

키워드

참고문헌

  1. F. Poisson, P.E. Gautier, F. Letorneaux (2008) Noise Sources for High Speed Trains : a Review of results in the TGV case, Noise and Vibration Mitigation for Rail Transportation Systems, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 99, pp. 71-77. https://doi.org/10.1007/978-3-540-74893-9_10
  2. H. Noh, S. Choi, H. Koh, S. Hong (2012) Aerodynamic Noise Characteristics of High-speed Trains by the Beamforming Method, Journal of the Korean Society for Railway, 15(3), pp. 231-236. https://doi.org/10.7782/JKSR.2012.15.3.231
  3. H. Noh, J. Cho, S. Choi, S. Hong (2012) Noise Sources Localization on High Speed Trains by using a Microphone Array, Journal of the Korean Society for Railway, 15(1), pp. 23-28. https://doi.org/10.7782/JKSR.2012.15.1.023
  4. C. Mellet, F. Letourmeaux, F. Poisson, C. Talotte (2006) High speed train noise emission : Latest investigation of the aerodynamic/rolling noise contribution, Journal of Sound and Vibration, 293, pp. 535-546. https://doi.org/10.1016/j.jsv.2005.08.069
  5. H. K. Oh, M. Kwak, H-b Kwon, S-s. Kim, S. Kim (2015) A Study on the Contribution of Exterior Devices to Running Resistance in High-Speed Trains, Journal of the Korean Society for Railway, 18(4), pp. 309-316. https://doi.org/10.7782/JKSR.2015.18.4.309
  6. Y. Lee, J. Rho, M. Kwak, J. Lee (2010) Experimental studies on aerodynamic characteristics of various types of pantograph for high speed train, The 8th Euromech Fluid Mechanics Conference(EFMC8), Bad Reichenhall, Germany.
  7. J. Rho, Y. Lee, K. Kim, D. Lee (2010) Experimental Investigations on Aerodynamic Characteristics of scaled Pantograph System with various Panhead Shape for High Speed Train, 6th IUTAM Symposium on Bluff Body Wakes and Vortex Induced Vibrations, Capri Island, Italy.