DOI QR코드

DOI QR Code

철도차량 보조전원장치의 효율향상을 위한 새로운 전력변환회로 구조 연구

Research on High-Efficiency Power Conversion Structure for Railroad Auxiliary Power Supply(APS) System

  • Cho, In-Ho (Propulsion System Research Team, Korea Railroad Research Institute) ;
  • Jung, Shin-Myung (Propulsion System Research Team, Korea Railroad Research Institute) ;
  • Lee, Byoung-Hee (Department of Electronic and Control Engineering, Hanbat National University)
  • 투고 : 2016.04.20
  • 심사 : 2016.05.20
  • 발행 : 2016.06.30

초록

본 논문은 철도차량에 사용되는 보조전원장치(APS)의 고효율화 및 경량화를 위한 방안으로 새로운 철도차량용 보조전원장치의 회로 구조를 제안한다. 제안하는 회로 구조는 기존의 보조전원장치 전력변환 흐름에서 중복 수행되고 있는 전력변환 단계를 단순화 하여, 스위치 소자의 부담을 경감하고 수동소자의 크기를 줄여 전력밀도를 높이는 것을 목적으로 하고 있다. 본 연구에서 제안하는 회로 구조는 기존 철도차량용 보조전원장치에 널리 이용되는 멀티레벨 컨버터를 기본 회로로 하고 있으며, 기존 회로의 1차 측 구조에 커패시터 소자를 추가하여 전력변환 스위치의 소프트스위칭 조건을 용이하게 하는 효과를 얻음과 동시에 추가되는 커패시터를 별도의 저전압 전원소스로 활용하고자 한다. 판토그래프 단에 위치하는 새로운 전원소스를 활용하여 철도차량에 탑재되는 배터리 충전용 컨버터의 에너지를 직접 공급받음으로써, 기존 주 전력변환 컨버터 용량 및 사이즈가 절감되는 효과를 얻을 수 있을 뿐만 아니라 전력변환 단계의 축소로 에너지 변환 효율도 향상되는 효과를 얻을 수 있다. 본 연구에서는 도시철도차량에서 사용되는 보조전원장치의 스펙을 적용하여 제안하는 회로를 디자인하고 타당성을 검증하였다.

This paper introduces auxiliary power supply systems (APS) for railroad applications and proposes a new power conversion structure for highly-efficient and lightweight APS systems. The proposed structure focuses on an improvement of the power density in APS. It eliminates unnecessary power conversion stages in the conventional APS structure by modulating the dc/dc converter circuit and the structure of the system. The dc/dc converter circuit used in the proposed structure is based on a multi-level half-bridge converter, a widely used topology in railroad APS applications; a flying capacitor is newly added to the conventional circuit. The added capacitor is used not only to enhance the soft switching condition of the switches, but also so that the new pantograph will have a side voltage source of a battery charger in the APS structure. Since the battery charger uses the pantograph side voltage source in the proposed structure, rather than using the output of the main dc/dc converter in the conventional structure, the size and efficiency of the main dc/dc converter are reduced and increased, respectively. To verify the effectiveness of the proposed structure, simulation results will be presented with metropolitan transit APS specifications.

키워드

참고문헌

  1. J.M. Jo, Y.J. Han, H.S. Jeong, C.Y. Lee, et al. (2012) Development of Ultra Light Auxiliary Power Supply for DC train, Proceedings of The KIEE, 2012(4), pp. 177-178.
  2. http://pdf.directindustry.com/pdf/knorr-bremse-powertech-gmbh/pcs-rail-au-1000-long-distance-train-solutions/81829-240343.html (Accessed 14 June 2016)
  3. Bobert L. Steigerwald (1988) A Comparison of Half-Bridge Resonant Converter Topologies, IEEE Transaction on Power electronics, 3(2), pp. 174-182. https://doi.org/10.1109/63.4347
  4. V. Volperian, S. Cuk (1985) A complete dc analysis of the series resonant converter, Proceedings of the IEEE Power electronics Specialists Conference, Cambridge, MA, pp. 85-100.
  5. K. Jin, X. Ruan (2006) Hybrid Full-Bridge Three-Level LLC Resonant Converter-A Novel DC-DC Converter Suitable for Fuel-Cell Power System, IEEE Transaction on Industrial Electronics, 53(5), pp.1492-1503. https://doi.org/10.1109/TIE.2006.882020
  6. X. Ruan, and B. Li (2005) Zero-Voltage and Zero-Current-Switching PWM Hybrid Full-Bridge Three-Level Converter, IEEE Transaction on Industrial Electronics, 52(1), pp.213-220. https://doi.org/10.1109/TIE.2004.837911
  7. J.S. Lai, F.Z. Peng (1996) Multilevel Converters-A New Breed of Power Converters, IEEE Transactions on Industry Applications, 32(3), pp.509-517. https://doi.org/10.1109/28.502161
  8. S.H. Kwon, K.H. Jin, S.J. Kim, T.H. Lee, et al. (2012) IPMSM Drives Using NPC 3-Level Inverters for the Next Generation High Speed Railway System, Journal of the Korean Society for Railway, 15(2), pp.129-134. https://doi.org/10.7782/JKSR.2012.15.2.129
  9. J.A. Sabate, V. Vlatkovic, R.B. Ridley, F.C. Lee (1991) High-voltage, high-power, ZVS, full-bridge PWM converter employing an active snubber, Proceedings of the 6th Applied Power Electronics Conference and Exposition, Dallas, TX, pp. 158-163.
  10. W. Chen, F.C. Lee, M. M. Jovanovic, J.A. Sabate (1995) A comparative study of a class of full bridge zero-voltage- switched PWM converters, Proceedings of the 10th Applied Power Electronics Conference and Exposition, Dallas, TX, pp. 893-899.
  11. R. Redl, N.O. Sokal, L. Balogh (1991) A novel soft-switching full-bridge DC/DC converter: Analysis,design considerations, and experimental results at 1.5 kW, 100 kHz, IEEE Transactions on Power Electronics, 6(3), pp. 408-418. https://doi.org/10.1109/63.85909
  12. K.M. Cho, Y.D. Kim, I.H. Cho, G.W. Moon (2012) Transformer Integrated with Additional Resonant Inductor for Phase-Shift Full-Bridge Converter with Primary Clamping Diodes, IEEE Transactions on Power Electronics, 27(5), pp. 2405-2414. https://doi.org/10.1109/TPEL.2011.2106514
  13. I.H. Cho, K.M. Cho, J.W. Kim, G.W. Moon (2011) A New Phase-Shifted Full-Bridge Converter With Maximum Duty Operation for Server Power System, IEEE Transactions on Power Electronics, 26(12), pp. 3491-3500. https://doi.org/10.1109/TPEL.2011.2129532
  14. F. Canales (2003) Novel DC/DC Converters For High-Power Distributed Power Systems, PhD Thesis, Virginia Polytechnic Institute and State University.