DOI QR코드

DOI QR Code

Genetic identification of anisakid nematodes isolated from largehead hairtail (Trichiurus japonicus) in Korea

  • Kim, Jeong-Ho (Department of Marine Bioscience, Gangneung-Wonju National University) ;
  • Nam, Woo-Hwa (Department of Marine Bioscience, Gangneung-Wonju National University) ;
  • Jeon, Chan-Hyeok (East Coast Life Science Institute, Gangneung-Wonju National University)
  • 투고 : 2016.04.05
  • 심사 : 2016.06.30
  • 발행 : 2016.07.31

초록

Background: The nematode species belonging to genus Anisakis occur at their third larval stage in numerous marine teleost fish species worldwide and known to cause accidental human infection through the ingestion of raw or undercooked fish or squids. They may also draw the attention of consumers because of the visual impact of both alive and dead worms. Therefore, the information on their geographical distribution and clear species identification is important for epidemiological survey and further prevention of human infection. Results: For identification of anisakid nematodes species isolated from largehead hairtail (Trichiurus japonicus), polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of internal transcribed spacers of ribosomal DNA were conducted. Mitochondrial cytochrome c oxidase subunit 2 gene was also sequenced, and phylogenetic analysis was conducted. From the largehead hairtail (n = 9), 1259 nematodes were isolated in total. Most of the nematodes were found encapsulated throughout the viscera (56.2 %, 708/1259) or moving freely in the body cavity (41.5 %, 523/1259), and only 0.3 % (4/1259) was found in the muscles. By PCR-RFLP, three different nematode species were identified. Anisakis pegreffii was the most dominantly found (98.7 %, 1243/1259) from the largehead hairtail, occupying 98.7 % (699/708) of the nematodes in the mesenteries and 98.1 % (513/523) in the body cavity. Hybrid genotype (Anisakis simplex ${\times}$ A. pegreffii) occupied 0.5 %, and Hysterothylacium sp. occupied 0.2 % of the nematodes isolated in this study. Conclusions: The largehead hairtail may not significantly contribute accidental human infection of anisakid nematode third stage larvae because most of the nematodes were found from the viscera or body cavity, which are not consumed raw. But, a high prevalence of anisakid nematode larvae in the largehead hairtail is still in concern because they may raise food safety problems to consumers. Immediate evisceration or freezing of fish after catch will be necessary before consumption.

키워드

참고문헌

  1. Audicana MT, Kennedy MW. Anisakis simplex: from obscure infectious worms to inducer of immune hypersensitivity. Clin Microbiol Rev. 2008;21:360-79. doi:10.1128/CMR.00012-07.
  2. Bak TJ, Jeon CH, Kim JH. Occurrence of anisakid nematode larvae in chub mackerel (Scomber japonicus) caught off Korea. Int J Food Microbiol. 2014;191:149-56. doi:10.1016/j.ijfoodmicro.2014.09.002.
  3. Borges JN, Cunha LFG, Santos HLC, Monteiro-Nato C, Santos CP. Morphological and molecular diagnosis of anisakid nematode larvae from cutlassfish (Trichiurus lepturus) off the coast of Rio de Janeiro, Brazil. PLOS One. 2012;7:e40447. doi:10.1371/journal.pone.0040447.
  4. Bush AO, Lafferty KD, Lotz JM, Shostak A. Parasitology meets ecology on its own terms: Margolis et al., revisited. J Parasitol. 1997;83:575-83. doi:10.2307/3284227.
  5. Cha YG, Kim KS. A causality analysis of the prices between imported fisheries and domestic fisheries in distribution channel. J Fish Business Admin. 2009;40:105-26 (in Korean with English summary).
  6. Cipriani P, Smaldone G, Acerra V, D'Angelo L, Anastasio A, Bellisario B, et al. Genetic identification and distribution of the parasitic larvae of Anisakis pegreffii and Anisakis simplex (s. s.) in European hake Merluccius merluccius from the Tyrrhenian Sea and Spanish Atlantic coast: implications for food safety. Int J Food Microbiol. 2015;198:1-8. doi:10.1016/j.ijfoodmicro.2014.11.019.
  7. Cipriani P, Acerra V, Bellisario B, Sbaraglia GL, Cheleschi R, Nascetti G, et al. Larval migration of the zoonotic parasite Anisakis pegreffii (Nematoda: Anisakidae) in European anchovy, Engraulis encrasicolus: implications to seafood safety. Food Control. 2016;59:148-57. doi:10.1016/j.foodcont.2015.04.043.
  8. D'Amelio S, Mathiopoulos KD, Santos CP, Pugachev ON, Webb SC, Picanco M, et al. Genetic markers in ribosomal DNA for the identification of members of the genus Anisakis (Nematoda: ascaridoidea) defined by polymerase-chain-reaction-based restriction fragment length polymorphism. Int J Parasitol. 2000;30:223-6. doi:10.1016/S0020-7519(99)00178-2.
  9. Fageholm HP. Systematic implications of male caudal morphology in ascaridoid nematode parasites. Syst Parasitol. 1991;19:215-28. doi:10.1007/BF00011888.
  10. Hsu KC, Shih NT, Ni IH, Shao KT. Speciation and population structure of three Trichiurus species based on mitochondrial DNA. Zool Studies. 2009;48:835-49.
  11. Keskin E, Koyuncu CE, Genc E. Molecular identification of Hysterothylacium aduncum specimens isolated from commercially important fish species of Eastern Mediterranean Sea using mtDNA cox1 and ITS rDNA gene sequences. Parasitol Int. 2015;64:222-8. doi:10.1016/j.parint.2014.12.008.
  12. Kim YH, Yoo JT, Lee EH, Oh TY, Lee DW. Age and growth of largehead hairtail Trichiurus lepturus in the East China Sea. Kor J Fish Aquat Sci. 2011;44:695-700. doi:10.5657/KFAS.2011.0695 (in Korean with English Summary).
  13. Kong QM, Fan LF, Zhang JH, Akao N, Dong KW, Lou D, et al. Molecular identification of Anisakis and Hysterothylacium larvae in marine fishes from the East China Sea and the Pacific coast of central Japan. Int J Food Microbiol. 2015;199:1-7. doi:10.1016/j.ijfoodmicro.2015.01.007.
  14. Lee MW, Cheon DS, Choi CS. Molecular genotyping of Anisakis species from Korean sea fish by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Food Control. 2009;20:623-6. doi:10.1016/j.foodcont.2008.09.007.
  15. Levsen A, Berland B. Anisakis species. In: Woo PTK, Buchmann K, editors. Fish parasites: pathobiology and protection. CAB International: USA; 2012. p. 298-309.
  16. Lymbery AJ, Cheah FY. Anisakid nematodes and anisakiasis. In: Murrell KD, Fried B, editors. Food-borne parasitic zoonoses: fish and plant-borne parasites. New York: Springer Science; 2007. p. 185-207.
  17. Mattiucci M, Nascetti G. Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary process. Adv Parasitol. 2008;66:47-148. doi:10.1016/S0065-308X(08)00202-9.
  18. Mattiucci M, Fazii P, De Rosa A, Paoletti M, Megna AS, Glielmo A, et al. Anisakiasis and gastroallergic reactions associated with Anisakis pegreffii infection, Italy. Emer Inf Dis. 2013;19:196-9. doi:10.3201/eid1903.121017.
  19. Nadler SA, Hudspeth DSS. Phylogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution. J Parasitol. 2000;86:380-93. doi:10.1645/0022-3395(2000)086[0380:POTANA]2.0.CO;2.
  20. Nakamura I, Parin NV. FAO Species Catalogue. Vol. 15. Snake mackerels and cutlassfishes of the world (Families Gempylidae and Trichiuridae). An annotated and illustrated catalogue of the snake mackerels, snoeks, escolars, gemfishes, sackfishes, domine, oilfish, cutlassfishes, scabbardfishes, hairtails, and frostfishes known to date. FAO Fish Synop. 1993;125:99-106.
  21. Sakanari JA, McKerrow JH. Anisakiasis. Clin Microbiol Rev. 1989;2:278-84. doi:10.1128/CMR.2.3.278.
  22. Shamsi S, Gasser R, Beveridge I. Description and genetic characterisation of Hysterothylacium (Nematoda: Raphidascarididae) larvae parasitic in Australian marine fishes. Parasitol Int. 2013;62:320-8. doi:10.1016/j.parint.2012.10.001.
  23. Shih HH. Parasitic helminth fauna of the cutlass fish, Trichiurus lepturus L., and the differentiation of four anisakid nematode third-stage larvae by nuclear ribosomal DNA sequences. Parasitol Res. 2004;93:188-95. doi:10.1007/s00436-004-1095-7.
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol. 2013;30:2725-9. doi:10.1093/molbev/mst197.
  25. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673-80. doi:10.1093/nar/22.22.4673.
  26. Tzeng CH, Chen CS, Chiu TS. Analysis of morphometry and mitochondrial DNA sequences from two Trichiurus species in waters of the western North Pacific: taxonomic assessment and population structure. J Fish Biol. 2007;70(B):165-76. doi:10.1111/j.1095-8649.2007.01368.x.
  27. Umehara A, Kawakami Y, Araki J, Uchida A. Molecular identification of the etiological agent of the human anisakiasis in Japan. Parasitol Int. 2007;56:211-5. doi:10.1016/j.parint.2007.02.005.
  28. Umehara A, Kawakami Y, Ooi HK, Uchida A, Ohmae H, Sugiyama H. Molecular identification of Anisakis type I larvae isolated from hairtail fish off the coasts of Taiwan and Japan. Int J Food Microbiol. 2010;143:161-5. doi:10.1016/j.ijfoodmicro.2010.08.011.
  29. Utaaker KS, Robertson LJ. Climate changes and food borne transmission of parasites: a consideration of possible interactions and impacts for selected parasites. Food Res Int. 2015;68:16-23. doi:10.1016/j.foodres.2014.06.051.
  30. Van Thiel PH, Kuipers FC, Roskam RT. A nematode parasitic to herring, causing atue abdominal syndromes in man. Trop Geogr Med. 1960;2:97-113.
  31. Wasko AP, Martins C, Oliveira C, Foresti F. Non-destructive genetic sampling in fish. An improved method for DNA extraction from fish fins and scales. Hereditas. 2003;138:161-5. doi:10.1034/j.1601-5223.2003.01503.x.
  32. Zhang LP, Du XJ, An RY, Li L, Gasser RB. Identification and genetic characterization of Anisakis larvae from marine fishes in the South China Sea using electrophoretic-guided approach. Electrophoresis. 2013;34:888-94. doi:10.1002/elps.201200493.