DOI QR코드

DOI QR Code

Experimental Study on Thermal NOx and CO Emission in a Laboratory-Scale Incinerator with Reversed Secondary Air Jet Injection

역방향 2차 공기 주입 방식을 적용한 소각 연소로의 Thermal NOx 및 CO 배출특성에 대한 축소모형실험 연구

  • 최종균 (국민대학교 일반대학원 기계공학과) ;
  • 최우성 (국민대학교 일반대학원 기계공학과) ;
  • 신동훈 (국민대학교 일반대학원 기계공학과)
  • Received : 2016.02.25
  • Accepted : 2016.05.11
  • Published : 2016.08.01

Abstract

Incinerators generally emit pollutants such as NOx and CO during the combustion process. In this paper, pollutant emissions and temperature distributions were studied in a simulated incinerator with a reversed (relative to the flue gas flow) secondary air injection system. The experiments were performed by using a lab-scale furnace in order to evaluate the effects of the injection location, direction and flow rate of secondary air jets. The emission of NOx was lower in the case of reversed secondary air injection than in the case of cross injection, due to the recirculation and mixing of the exhaust gas. In the reversed air injection cases, thermal NOx emissions decreased as secondary air ratio increased from 30 to 60 and slightly increased at secondary air ratios higher than 60. In most cases, CO emissions were not detected except for a few reversed secondary air injection cases, in which cases CO concentrations below 2ppm were observed.

일반적으로 연소로는 연료의 연소과정에서 NOx, CO등의 공해물질을 배출한다. 본 연구는 소각연소로를 대상으로 2차 공기를 연소가스 흐름의 역방향으로 주입시키는 방법의 NOx 및 CO 배출특성에 대한 연구를 수행하였다. 연구의 주요변수는 1, 2차 공기의 유량비와 2차 공기의 투입 방향으로 설정하였다. 변수에 따른 NOx 및 CO 배출특성을 묘사하기 위해서 축소모형실험 연구를 수행하였다. 실험결과 1차 공기유량이 감소하고 2차 공기유량이 증가할수록 NOx가 감소되다가 일정 유량비 이상에서 다시 NOx가 다소 증가하는 형태가 나타났다. 역방향으로 빠른 유속의 2차 공기가 투입될 때 연소로 내부에 유동 재순환이 발생하여 혼합이 증가하고 이로 인해서 온도 영역이 고르게 분포되는 것으로 나타났으며 그 결과로서 thermal NOx의 저감 효과를 확인할 수 있었다. CO는 2차 공기가 역방향에서 높은 비율로 투입되는 조건이외에서는 측정되지 않았다. 측정된 경우도 CO의 농도는 2 ppm 이내로 안정적인 연소 조건으로 나타났다.

Keywords

References

  1. Park, J. M., Lee, S. B., Kang, J. G., Kim, J. P., Choi, E. S., Hwang, W. G. and Kwon, O. S., 2007, "Characteristics of Hazardous Air Pollutant Emissions from Waste Incinerators," Journal of Korean Society for Atmospheric Environment, Vol. 23, No. 2, pp. 183-190. https://doi.org/10.5572/KOSAE.2007.23.2.183
  2. Kim, S. W., Heckel, A., Mckeen, S. A., Frost, G. J., Hsie, E. Y., Trainer, M. K., Richter, A., Burrows, J. P., Peckham S. E. and Kwon, G. A. G., 2006, "Satellite-observed U.S. Power Plant NOx Emission Reductions and their Impact on Air Quality," AGU Journal, Vol. 33, No. 22.
  3. United States Environmental Protection Agency, 2004, "The Clean Air Act," Part A-Air Quality and Emission Limitations, pp. 7-139.
  4. EIAPP certificate, 2008, "MARPOL Annex VI," Reg. NOx Technical Code (resolution MEPC.177(58) as amended by resolution MEPC.251.(66).
  5. R&D Information Center., 2013, "Plant/Engineering Industry of Market Trends and Technology Development Strategy," Knowledge Industry Information Institute.
  6. Park, S. Y., Lee, J. G. and Yoo, K. S., 2004, "The Effect of Additives on SNCR Reaction," Theories and Applications of Chem. Eng, Vol. 10, No. 1, pp. 617-620.
  7. Shim, S. T., Hong, C. H., Kim, B. S., Park, C. S. and Park, K., 2012, "Effects of Geometrical Variation on Performance of OFA-type Boiler," Korean Journal of Air-Conditioning and Refrigeration Engineering, pp. 854-858.
  8. Kang, K., Oh, J., Yang, J., Yang, W. and Ryu, C., 2015, "Biomass Co-firing with Fuel Staging for NOx Emission Reduction in Coal-fired Boiler," KOSCO SYMPOSIUM, Vol. 50, pp. 123-126.
  9. Ha, J. S., Kim, T. K. and Shim, S. H., 2010, "A Numerical Study of the Air Fuel Ratio Effect on the Combustion Characteristics in a MILD Combustor," Korean Socity of Environmental Engineers, Vol. 32, No. 6, pp. 587-592.
  10. Han, J. W. and Lee, C. E., 2002, "Effect of Exhaust Gas Recirculation on CO and NO Emission of Oxygen Enhanced Flame," Trans. Korean Soc. Mech. Eng. (B), pp. 1524-1529.
  11. Lee, J. W., Park, B. S., Seo, J. D. and Huh, I. S., 1999, "Flow Characteristics Inside the Combustion Chamber of Incinerator in Accordance with Secondary Air Injection," KOSCO SYMPOSIUM, Vol. 18, pp. 125-135.
  12. Hwang, G. Y., 2004, "A Study of Numerical Simulation on Flow Field in the Combustion Chamber of Incinerator According to Air Injection Angles," Master's thesis, Incheon National University.
  13. Choi, C., Hwang, S., Chung, T. Y. and Shin, D., 2014, "The CO Reductions through the Secondary Air Nozzle Retrofit of an Wood Waste Incinerator," i-CIPEC, Vol. 8.
  14. Baek, J., Choi, C., Hwang, S., Chung, T. Y. and Shin, D., 2014, "Study of the Operating Characteristics of the Combustion Chamber Utilizing a Flameless Combustion Technology," KOSCO SYMPOSIUM, Vol. 49, pp. 17-18.
  15. Choi, W. S., Choi, C., Chung, T. Y. and Shin, D., 2014, "Research of the CO Reductions through the Secondary Air Nozzle Retrofit in an Wood Waste Incinerator," KOSCO SYMPOSIUM, Vol. 49, pp. 167-168.
  16. Choi, J., Choi, C., Hwang, S., Chung, T. Y. and Shin, D., 2012, "The Research on CFD Turbulance Models for Comparison According to my Secondary Air Injection into the Combustion," KOSCO SYMPOSIUM, Vol. 45, pp. 345-347.
  17. Shin, D., 1998, "Study on Design Optimization of Stoker Type Municipal Waste Incinerator for Low Emission," Ph.D Thesis, Korea Advanced Institute of Science and Technology.
  18. Boman, B. L. and Ragland, K. W., 2005, "Combustion Engineering," MaGraw-Hill, Korea Language Edition, pp. 259-261.
  19. Di Nola, G., 2007, "Biomass Fuel Characterization for NOx Emissions in Cofiring Applications," Ph.D. Thesis, Delft University of Technology.
  20. Gu, J. and Oh, S., 2012, "Combustion Chracteristics of Biomass and Refuse Derived Fuel," Applied Chemistry for Engineering, Vol. 23, No. 5, 456-461.