DOI QR코드

DOI QR Code

3차원 곡관에서의 굴절률 일치법을 이용한 맥동 유동의 PIV 측정

PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method

  • 홍현지 (부산대학교 기계공학과) ;
  • 지호성 (부산대학교 초소형 기계부품 기술혁신센터) ;
  • 김경천 (부산대학교 기계공학과)
  • 투고 : 2016.03.04
  • 심사 : 2016.04.05
  • 발행 : 2016.08.01

초록

3차원의 협착 혈관모델을 3D 프린터를 이용하여 제작하였다. 협착부는 관의 중심축에 대하여 대칭인 형태이며, 협착부가 0도인 직관과 10도로 굽어진 관인 두 가지 모델에 대하여 실험을 수행하였다. 협착모델 내부 속도장을 매질에 대한 왜곡 없이 측정하기 위하여 굴절률일치법을 이용하였다. 정량펌프를 사용하여 발생된 맥동유동은 펌프의 회전속도로 세 가지의 속도조건을 조절하였다. 비정상상태의 속도장은 time-resolved PIV 기법을 이용하여 측정되었다. 주기적인 와류의 생성과 이동은 관 내 최대속도 영역과 관련 있으며, 와류의 크기와 위치 및 대칭성은 레이놀즈수와 관의 기하학적 구조에 영향을 받음을 알 수 있었다. 곡선관에서는 협착부 하류에 재순환 영역이 관찰되며, 이는 혈류역학적 관점에서 혈전의 형성과 침착 가능성을 설명해준다.

Three-dimensional models of stenosis blood vessels were prepared using a 3D printer. The models included a straight pipe with axisymmetric stenosis and a pipe that was bent $10^{\circ}$ from the center of stenosis. A refractive index matching method was utilized to measure accurate velocity fields inside the 3D tubes. Three different pulsatile flows were generated and controlled by changing the rotational speed frequency of the peristaltic pump. Unsteady velocity fields were measured by a time-resolved particle image velocimetry method. Periodic shedding of vortices occurred and moves depended on the maximum velocity region. The sizes and the positions of the vortices and symmetry are influenced by mean Reynolds number and tube geometry. In the case of the bent pipe, a recirculation zone observed at the post-stenosis could explain the possibility of blood clot formation and blood clot adhesion in view of hemodynamics.

키워드

참고문헌

  1. Davies, P. F., 2009, "Hemodynamic Shear Stress and the Endothelium in Cardiovascular Pathophysiology," Nature Reviews Cardiology, Vol. 6, pp. 16-26.
  2. Chiu, J-J., Chien, S., 2011, "Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives," Physiological Reviews, Vol. 91, pp. 327-387. https://doi.org/10.1152/physrev.00047.2009
  3. Nerem, R. M., Levesque, M. J., Cornhill, J. F., 1981, "Vascular Endothelial Morphology as an Indicator of the Pattern of Blood Flow," Journal of Biomechanical Engineering, Vol. 103, No. 3, pp. 172-176. https://doi.org/10.1115/1.3138275
  4. Karino, T., "Microscopic Structure of Disturbed Flows in the Arterial and Venous Systems, and its Implication in the Localization of Vascular Diseases," 1986, International Angiology: A Journal of the International Union of Angiology, Vol. 5, pp. 297-313.
  5. Fisher, A. B., Chien, S., Barakat, A. I. and Nerem, R. M., 2001, "Endothelial Cellular Response to Altered Shear Stress," American Journal of Physiology-Lung Cellular and Molecular Physiology, Vol. 281, No. 3, pp. L529-L533. https://doi.org/10.1152/ajplung.2001.281.3.L529
  6. Bluestein, D., Niu, L., Schoephoerster, R. T. and Dewanjee, M. K., 1997a, "Fluid Mechanics of Arterial Stenosis: Relationship to the Development of Mural Thrombus," Annals of Biomedical Engineering, Vol. 25, pp. 344-356. https://doi.org/10.1007/BF02648048
  7. Bluestein, D., Niu, L., Schoephoerster, R. T. and Dewanjee, M. K., 1997b, "Fluid Mechanics of Arterial Stenosis: Relationship to the Development of MURAL Thrombus," Annals of Biomedical Engineering, Vol. 25, pp. 344-356. https://doi.org/10.1007/BF02648048
  8. PDAY Research Group, 1993, "Natural History of Aortic and Coronary Atherosclerotic Lesions in Youth. Findings from the PDAY Study," Arterioscler Thromb, Vol. 13 pp. 1291-1298. https://doi.org/10.1161/01.ATV.13.9.1291
  9. Wootton, D. M. and Ku, D. N., 1999a, "Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis," Annual Review of Biomedical Engineering, Vol. 1, pp. 299-329. https://doi.org/10.1146/annurev.bioeng.1.1.299
  10. Cheng, N. S., 2008, "Formula for the Viscosity of a Glycerol-Water Mixture," Industrial and Engineering Chemistry Research, Vol. 47, pp. 3285-3288. https://doi.org/10.1021/ie071349z