DOI QR코드

DOI QR Code

Power Allocation and Splitting Algorithm for SWIPT in Energy Harvesting Networks with Channel Estimation Error

채널 추정 오차가 존재하는 에너지 하베스팅 네트워크에서 SWIPT를 위한 파워 할당 및 분할 알고리즘

  • Lee, Kisong (Department of Information and Telecommunication Engineering, Kunsan National University) ;
  • Ko, JeongGil (Department of Software and Computer Engineering, Ajou University)
  • Received : 2016.05.12
  • Accepted : 2016.05.27
  • Published : 2016.07.31

Abstract

In the next generation wireless communication systems, an energy harvesting from radio frequency signals is considered as a method to solve the lack of power supply problem for sensors. In this paper, we try to propose an efficient algorithm for simultaneous wireless information and power transfer in energy harvesting networks with channel estimation error. At first, we find an optimal channel training interval using one-dimensional exhaustive search, and estimate a channel using MMSE channel estimator. Based on the estimated channel, we propose a power allocation and splitting algorithm for maximizing the data rate while guaranteeing the minimum required harvested energy constraint, The simulation results confirm that the proposed algorithm has an insignificant performance degradation less than 10%, compared with the optimal scheme which assumes a perfect channel estimation, but it can improve the data rate by more than 20%, compared to the conventional scheme.

차세대 무선 통신 시스템에서는 RF 에너지 하베스팅 기술을 이용하여 센서의 전원 부족 문제를 해결하고자 한다. 본 논문에서는 채널 추정 오차가 존재하는 에너지 하베스팅 네트워크에서 무선 정보 및 전력 동시 전송을 위한 효율적인 알고리즘을 제안하고자 한다. 먼저, 1차원의 완전 검색을 통해 최적의 채널 추정 주기를 찾은 후, MMSE 채널 추정기를 이용하여 채널을 추정한다. 추정된 채널 값을 기반으로, 최소 필요 획득 에너지 조건을 만족시켜주면서 데이터 전송률을 최대화할 수 있는 파워 할당 및 분할 방안을 제안하였다. 시뮬레이션을 통해 제안 방안은 완벽한 채널 추정을 가정한 최적 방안에 비해 10% 미만의 성능 저하가 있었지만, 기존 방안과 비교할 시에는 데이터 전송률을 20% 이상 향상시킴을 확인 하였다.

Keywords

References

  1. C. He, B. Sheng, P. Zhu, and X. You, "Energy efficiency and spectral efficiency tradeoff in downlink distributed antenna systems," IEEE Wireless Commun. Lett., vol. 1, no. 3, pp. 153-156, June 2012. https://doi.org/10.1109/WCL.2012.022812.120048
  2. M. Pinuela, P. Mitcheson, and S. Lucyszyn, "Ambient RF energy harvesting in urban and semi-urban environments," IEEE Trans. Microwave Theory Tech., vol. 61, no. 7, pp. 2715-2726, July 2013. https://doi.org/10.1109/TMTT.2013.2262687
  3. R. J. M. Vullers, R. V. Schaijk, I. Doms, C. V. Hoof, and R. Merterns, "Micropower energy harvesting," Solid-State Electronics, vol. 53, no. 7, pp. 684-693, July 2009. https://doi.org/10.1016/j.sse.2008.12.011
  4. L. R. Varshney, "Transporting information and energy simultaneously," in Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 1612-1616, July 2008.
  5. P. Grover and A. Sahai, "Shannon meets tesla: wireless information and power transfer," in Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 2363-2367, June 2010.
  6. L. Liu, R. Zhang, and K. Chua, "Wireless information and power transfer: a dynamic power splitting approach," IEEE Trans. Commun., vol. 61, no. 9, pp. 3990-4001, Sep. 2013. https://doi.org/10.1109/TCOMM.2013.071813.130105
  7. D. W. K. Ng, E. S. Lo, and R. Schober, "Wireless information and power transfer: Energy efficiency optimization in OFDMA systems," IEEE Trans. Wireless Commun., vol. 12, no. 12, pp. 6352-6370, Dec. 2013. https://doi.org/10.1109/TWC.2013.103113.130470
  8. R. Berry and R. Gallager, "Communication over fading channels with delay constraints," IEEE Trans. Inf. Theory, vol. 48, no. 5, pp. 1135-1149, May 2002. https://doi.org/10.1109/18.995554
  9. B. Hassibi and B. M. Hochwald, "How much training is needed in multiple-antenna wireless links?," IEEE. Trans. Inf. Theory, vol. 49, no. 4, pp. 951-963, Apr. 2003. https://doi.org/10.1109/TIT.2003.809594
  10. J. Gorski, F. Pfeuffer, and K. Klamroth, "Biconvex sets and optimization with biconvex functions: a survey and extensions," Mathematical Methods Operations Research, vol. 66, no. 3, pp. 373-407, June 2007. https://doi.org/10.1007/s00186-007-0161-1
  11. W. Yu and R. Lui, "Dual methods for nonconvex spectrum optimization of multicarrier systems," IEEE Trans. Commun., vol. 54, no. 7, pp. 1310-1322, July 2006. https://doi.org/10.1109/TCOMM.2006.877962

Cited by

  1. 에너지 하베스팅 네트워크에서 물리계층 보안을 향상시키기 위한 파워 분할 기반의 아날로그 네트워크 코딩 vol.21, pp.10, 2016, https://doi.org/10.6109/jkiice.2017.21.10.1849
  2. 에너지 하베스팅 네트워크에서 최소 요구 보안 용량을 최대화하기 위한 시간 전환 기반의 아날로그 네트워크 코딩 vol.21, pp.11, 2016, https://doi.org/10.6109/jkiice.2017.21.11.2022