DOI QR코드

DOI QR Code

Numerical Study on the Atomization Process of a Supersonic Gas-Metallic Liquid Atomizer

초음속기체-금속액체 분사기의 미립화 과정에 대한 수치해석

  • Hwang, Won-Sub (Department of Aerospace Engineering, Pusan National University) ;
  • Kim, Kui-Soon (Department of Aerospace Engineering, Pusan National University) ;
  • Choi, Jeong-Yeol (Department of Aerospace Engineering, Pusan National University)
  • Received : 2016.04.25
  • Accepted : 2016.06.17
  • Published : 2016.07.01

Abstract

Numerical simulations on the close-coupled supersonic gas atomizer for metallic powder production were performed in this study. A proper turbulence model was chosen and then VOF(Volume of Fluid) and DPM(Discrete Phase Model) methods were sequentially applied for the simulations of primary and secondary break-up processes of liquid metal. Diameters of parent droplets were calculated by analyzing Level-Set function contour from the VOF result. Finally, the distribution of particle diameter was obtained from the DPM result at exit of the computational domain.

본 연구에서는 근접연계방식의 초음속기체 금속분말 미립화장치에 대한 수치해석을 수행하였다. 액체금속의 미립화 과정에서 발생하는 1, 2차 액적분열을 모사하기 위해서 난류 모델을 선정하고 VOF(Volume of Fluid), DPM(Discrete Phase Model) 해석을 차례대로 수행하였다. 해석결과, Level-Set function 분포도를 통해 1차 분열액적의 직경을 계산할 수 있었으며 이 데이터를 DPM 해석에 반영해 도메인 출구에서 수집된 입자들의 최종직경분포를 확인할 수 있었다.

Keywords

References

  1. Jeon, H. S., Liquid Atomization, Munundang, Jongno, Seoul, 2009, pp. 466-467.
  2. German, R. M., Powder Metallurgy & Particulate Materials Processing, Metal Powder Industries Federation, New Jersey, USA, 2005, pp. 70-71.
  3. Bayvel, L. and Orzechowski, Z., Liquid Atomization, Taylor & Francis, Washington, DC, USA, 1993, p. 11.
  4. Dombrowski, N. and Fraser, R. P., "A Photographic Investigation into the Disintegration of Liquid Sheets", Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 247, No. 924, 1954, pp. 101-130. https://doi.org/10.1098/rsta.1954.0014
  5. Ting, J. and Anderson, I. E., "A Computational Fluid Dynamics (CFD) Investigation of the Wake Closure Phenomenon", Materials Science and Engineering, Vol. 379, No. 1-2, 2004, pp. 264-276. https://doi.org/10.1016/j.msea.2004.02.065
  6. Zhao, W., Cao, F., Ning, Z., Zhang, G., Li, Z. and Sun, J., "A Computational Fluid Dynamics (CFD) Investigation of the Flow Field and the Primary Atomization of the Close Coupled Atomizer", Computers and Chemical Engineering, Vol. 40, 2012, pp. 58-66. https://doi.org/10.1016/j.compchemeng.2012.02.014
  7. Zeoli, N. and Gu. S., "Numerical Modelling of Droplet Break-up for Gas Atomisation", Computational Materials Science, Vol. 38, 2006, pp. 282-292. https://doi.org/10.1016/j.commatsci.2006.02.012
  8. Markus, S. and Fritsching, U., "Discrete Break-up Modeling of Melt Sprays", International Journal of Power Metallurgy, Vol.42, No. 4, 2006, pp. 23-32.
  9. Firmansyah, D. A., Kaiser, R., Zahaf, R., Coker, Z., Choi, T. Y. and Lee, D. G., "Numerical Simulations of Supersonic Gas Atomization of Liquid Metal Droplets", Japanese Journal of Applied Physics, Vol. 53, No. 5, 2014, pp. 05HA09-1-05HA09-7. https://doi.org/10.7567/JJAP.53.05HA09
  10. Mates, S. P. and Settles, G. S., "A Study of Liquid Metal Atomization Using Close-Coupled Nozzles, Part 1: Gas Dynamic Behavior", Atomization and Sprays, Vol. 15, No. 1, 2005, pp. 19-40. https://doi.org/10.1615/AtomizSpr.v15.i1.20
  11. Smithells, C. J. and Brandes, E. A., Metals Reference Book, 6th ed., Butterworth, London, 1983, p. 14-7.
  12. Chase, M. W., NIST-JANAF Thermochemical Tables Part II Cr-Zr, ACS AND AIP for NIST, American Chemical Society, Washington, D.C., USA, American Institute of Physics for the National Institute of Standards and Technology, Woodbury, N.Y., USA, 4th ed., 1998, pp. 1697-1700.
  13. Nishi, T., Shibata, H., Ohta, H. and Waseda, Y., "Thermal Conductivities of Molten Iron, Cobalt, and Nickel by Laser Flash Method", Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science, Vol. 34, No. 12, 2003, pp. 2801-2808. https://doi.org/10.1007/s11661-003-0181-2
  14. Lida, T. and Guthrie, R. L., The Physical Properties of Liquid Metals, Oxford, U.K, Clarendon Press, 1988, p. 183.
  15. Xiao, F., Fang, L. and Nogi, K., "Surface Tension of Molten Ni and Ni-Co Alloys", Journal of Materials Science & Technology, Vol. 21, No. 2, 2005, pp. 201-206.
  16. Herrin, J. L. and Dutton, J. C., "Supersonic Base Flow Experiments in the Near Wake of a Cylindrical Afterbody", AIAA Journal, Vol. 32, No. 1, 1994, pp. 77-83. https://doi.org/10.2514/3.11953
  17. Shin, J. R., Moon, S. Y., Won, S. H. and Choi, J. Y., "Detached Eddy Simulation of Base Flow in Supersonic Mainstream", The Korean Society for Aeronautical & Sciences, Vol. 37, No. 10, 2009, pp. 955-966. https://doi.org/10.5139/JKSAS.2009.37.10.955
  18. Shin, J. R. and Choi, J. Y., "Dynamic Correction of DES Model Constant for the Advanced Prediction of Supersonic Base Flow", The Korean Society for Aeronautical & Sciences, Vol. 38, No. 2, 2010, pp. 99-110. https://doi.org/10.5139/JKSAS.2010.38.2.099
  19. Dombrowski, N. and Johns, W. R., "The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets", Chemical Engineering Science, Pergamon Press Ltd., Oxford, Great Britain, Vol. 18, 1963, pp. 203-214. https://doi.org/10.1016/0009-2509(63)85005-8