DOI QR코드

DOI QR Code

Pyro-synthesis of Na2FeP2O7 Nano-plates as Cathode for Sodium-ion Batteries with Long Cycle Stability

  • Song, Jinju (Department of Materials Science and Engineering, Chonnam National University) ;
  • Yang, Juhyun (Department of Materials Science and Engineering, Chonnam National University) ;
  • Alfaruqi, Muhammad Hilmy (Department of Materials Science and Engineering, Chonnam National University) ;
  • Park, Wangeun (Department of Materials Science and Engineering, Chonnam National University) ;
  • Park, Sohyun (Department of Materials Science and Engineering, Chonnam National University) ;
  • Kim, Sungjin (Department of Materials Science and Engineering, Chonnam National University) ;
  • Jo, Jeonggeun (Department of Materials Science and Engineering, Chonnam National University) ;
  • Kim, Jaekook (Department of Materials Science and Engineering, Chonnam National University)
  • Received : 2016.07.01
  • Accepted : 2016.07.18
  • Published : 2016.07.31

Abstract

Carbon-coated sodium iron pyrophosphate ($Na_2FeP_2O_7$) was prepared by a simple and low-cost pyro-synthesis route for further use as the cathode for Na-ion batteries. The X-ray diffraction (XRD) pattern of the sample annealed at $650^{\circ}C$ confirmed the pure triclinic phase of $Na_2FeP_2O_7$. Electron microscopy studies revealed a cross linked plate shape morphology of the $Na_2FeP_2O_7$ sample. When tested for application in Na-ion battery, the $Na_2FeP_2O_7$ cathode showed two redox pairs in the potential window of 2.0-4.0 V. The cathode registered initial discharge and charge capacities of 80.85 and 90 mAh/g, respectively, with good cycling performance.

Keywords

References

  1. M. D. Slater, D. Kim, E. Lee, and C. S. Johnson, "Sodium-Ion Batteries," Adv. Funct. Mater., 23 [8] 947-58 (2013). https://doi.org/10.1002/adfm.201200691
  2. B. L. Ellis and L. F. Nazar, "Sodium and Sodium-Ion Energy Storage Batteries," Curr. Opin. Solid State Mater. Sci., 16 [4] 168-77 (2012). https://doi.org/10.1016/j.cossms.2012.04.002
  3. S. W. Kim, D. H. Seo, X. Ma, G. Ceder, and K. Kang, "Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries," Adv. Energy Mater., 2 710-21 (2012). https://doi.org/10.1002/aenm.201200026
  4. V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-Gonzalez, and T. Rojo, "Na-Ion Batteries, Recent Advances and Present Challenges to Become Low Cost Energy Storage Systems," Energy Environ. Sci., 5 [3] 5884-901 (2012). https://doi.org/10.1039/c2ee02781j
  5. C. Masquelier, A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "New Cathode Materials for Rechargeable Lithium Batteries: The 3-D Framework Structures $Li_3Fe_2(XO_4)_3(X=P,\;As)$," J. Solid State Chem., 135 [2] 228-34 (1998). https://doi.org/10.1006/jssc.1997.7629
  6. J. Jiang and J. R. Dahn, "ARC Studies of the Thermal Stability of Three Different Cathode Materials: $LiCoO_2$; $Li[Ni_{0.1}Co_{0.8}Mn_{0.1}]O_2$; and $LiFePO_4$, in $LiPF_6$ and LiBoB EC/DEC Electrolytes," Electrochem. Commun., 6 [1] 39-43 (2004). https://doi.org/10.1016/j.elecom.2003.10.011
  7. J. Barker, M. Y. Saidi, and J. L. Swoyer, "A Sodium-Ion Cell Based on the Fluorophosphate Compound $NaVPO_4F$," Electrochem. Solid-State Lett., 6 [1] A1-4 (2003). https://doi.org/10.1149/1.1523691
  8. K. Zaghib, J. Trottier, P. Hovington, F. Brochu, A. Cuerfi, A. Mauger, and C. Julien, "Characterization of Na-based Phosphate as Electrode Materials for Electrochemical Cells," J. Power Sources, 196 [22] 9612-17 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.061
  9. K. T. Lee, T. N. Ramesh, F. Nan, G. Botton, and L. F. Nazar, "Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries," Chem. Mater., 23 [16] 3593-600 (2011). https://doi.org/10.1021/cm200450y
  10. F. Sauvage, E. Quarez, J. M. Tarascon, and E. Baudrin, "Crystal Structure and Electrochemical Properties vs. $Na^+$ of the Sodium Fluorophosphate $Na_{1.5}VOPO_4F_{0.5}$," Solid State Sci., 8 [10] 1215-21 (2006). https://doi.org/10.1016/j.solidstatesciences.2006.05.009
  11. Y. Kawabe, N. Yabuuci, M. Kajiyama, N. Fukuhara, T. Inamasu, R. Okuyama, I. Nakai, and S. Komaba, "Synthesis and Electrode Performance of Carbon Coated $Na_2FePO_4F$ for Rechargeable Na Batteries," Electrochem. Commun., 13 [11] 1225-28 (2011). https://doi.org/10.1016/j.elecom.2011.08.038
  12. N. Recham, J.-N. Chotard, L. Dupont, K. Djllab, M. Armand, and J.-M. Tarascon, "Ionothermal Synthesis of Sodium-based Fluorophosphate Cathode Materials," J. Electrochem. Soc., 156 [12] A993 (2009). https://doi.org/10.1149/1.3236480
  13. P. Barpanda, T. Ye, S. I. Nishimura, S. C. Chung, Y. Yamada, M. Okubo, H. Zhou, and A. Yamada, "Sodium Iron Pyrophosphate: A Novel 3.0 V Iron-based Cathode for Sodium-Ion Batteries," Electrochem. Commun., 24 [1] 116-19 (2012). https://doi.org/10.1016/j.elecom.2012.08.028
  14. Y. H. Jung, C. H. Lim, J.-H. Kim, and D. K. Kim, "$Na_2FeP_2O_7$ as a Positive Electrode Material for Rechargeable Aqueous Sodium-Ion Batteries," RSC Adv., 4 [19] 9799 (2014). https://doi.org/10.1039/c3ra47560c
  15. M. Y. Saidi, J. Barker, H. Huang, J. L. Swoyer, and G. Adamson, "Performance Characteristics of Lithium Vanadium Phosphate as a Cathode Material for Lithium-Ion Batteries," J. Power Sources, 119-121 266-72 (2003). https://doi.org/10.1016/S0378-7753(03)00245-3
  16. J. Gim, V. Mathew, J. Lim, J. Song, S. Baek, J. Kang, D. Ahn, S.-J. Song, H. Yoon, and J. Kim, "Pyro-Synthesis of Functional Nanocrystals," Sci. Rep., 2 1-6 (2012).
  17. H. Kim, R. A. Shakoor, C. Park, S. Y. Lim, J. S. Kim, Y. N. Jo, W. Cho, K. Miyasaka, R. Kahraman, Y. Jung, and J. W. Choi, "$Na_2FeP_2O_7$ as a Promising Iron-based Pyrophosphate Cathode for Sodium Rechargeable Batteries: A Combined Experimental and Theoretical Study," Adv. Funct. Mater., 23 1147-55 (2013). https://doi.org/10.1002/adfm.201201589
  18. L. Zhang, H. Xiang, Z. Li, and H. Wang, "Porous $Li_3V_2(PO_4)_3/C$ Cathode with Extremely High-Rate Capacity Prepared by a Sol-Gel-Combustion Method for Fast Charging and Discharging," J. Power Sources, 203 [9] 121-25 (2012). https://doi.org/10.1016/j.jpowsour.2011.11.082
  19. S. Patoux, C. Wurm, M. Morcrette, G. Rousse, and C. Masquelier, "A Comparative Structural and Electrochemical Study of Monoclinic $Li_3Fe_2(PO_4)_3$ and $Li_3V_2(PO_4)_3$," J. Power Sources, 119-121 278-84 (2003). https://doi.org/10.1016/S0378-7753(03)00150-2
  20. H. Liu, G. Yang, X. Zhang, P. Gao, L. Wang, J. Fang, J. Pinto, and X. Jiang, "Kinetics of Conventional Carbon Coated- $Li_3V_2(PO_4)_3$ and Nanocomposite $Li_3V_2(PO_4)_3$ / Graphene as Cathode Materials for Lithium Ion Batteries," J. Mater. Chem., 22 [22] 11039-47 (2012). https://doi.org/10.1039/c2jm31004j
  21. P. Barpanda, G. Liu, C. D. Ling, M. Tamaru, M. Avdeev, S. C. Chung, Y. Yamada, and A. Yamada, "$Na_2FeP_2O_7$: A Safe Cathode for Rechargeable Sodium-Ion Batteries," Chem. Mater., 25 [17] 3480-87 (2013). https://doi.org/10.1021/cm401657c
  22. Y. Wu, Z. Wen, and J. Li, "Hierarchical Carbon-Coated $LiFePO_4$ Nanoplate Microspheres with High Electrochemical Performance for Li-Ion Batteries," Adv. Mater., 23 [9]1126-29 (2011). https://doi.org/10.1002/adma.201003713
  23. D.-H. Kim and J. Kim, "Synthesis of $LiFePO_4$ Nanoparticles in Polyol Medium and Their Electrochemical Properties," Electrochem. Solid-State Lett., 9 [9] A439 (2006). https://doi.org/10.1149/1.2218308
  24. L. Qiu, V. G. Pol, J. Calderon-Moreno, and A. Gedanken, "Synthesis of Tin Nanorods via a Sonochemical Method Combined with a Polyol Process," Ultrason. Sonochem., 12 [4] 243-47 (2005). https://doi.org/10.1016/j.ultsonch.2004.02.001

Cited by

  1. Comparative Investigation of Na2FeP2O7 Sodium Insertion Material Synthesized by Using Different Sodium Sources vol.6, pp.4, 2016, https://doi.org/10.1021/acssuschemeng.7b04516
  2. Conversion-Alloying Anode Materials for Na-ion Batteries: Recent Progress, Challenges, and Perspective for the Future vol.55, pp.4, 2016, https://doi.org/10.4191/kcers.2018.55.4.07
  3. A Scalable Approach to Na 2 FeP 2 O 7 @Carbon/Expanded Graphite as a Low‐Cost and High‐Performance Cathode for Sodium‐Ion Batteries vol.7, pp.18, 2016, https://doi.org/10.1002/celc.202001087
  4. Electrochemical performance of Na2FeP2O7/C cathode for sodium-ion batteries in electrolyte with fluoroethylene carbonate additive vol.895, pp.p2, 2016, https://doi.org/10.1016/j.jallcom.2021.162656