DOI QR코드

DOI QR Code

Molecular Orientation of Intercalants Stabilized in the Interlayer Space of Layered Ceramics: 1-D Electron Density Simulation

  • Yang, Jae-Hun (Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Pei, Yi-Rong (Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Piao, Huiyan (Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Vinu, Ajayan (Future Industries Institute, University of South Australia) ;
  • Choy, Jin-Ho (Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2016.07.11
  • Accepted : 2016.07.18
  • Published : 2016.07.31

Abstract

In this review, an attempt is made to calculate one-dimensional (1-D) electron density profiles from experimentally determined (00l) XRD intensities and possible structural models as well in an effort to understand the collective intracrystalline structures of intercalant molecules of two-dimensional (2-D) nanohybrids with heterostructures. 2-D ceramics, including layered metal oxides and clays, have received much attention due to their potential applicability as catalysts, electrodes, stabilizing agents, and drug delivery systems. 2-D nanohybrids based on such layered ceramics with various heterostructures have been realized through intercalation reactions. In general, the physico-chemical properties of such 2-D nanohybrids are strongly correlated with their heterostructures, but it is not easy to solve the crystal structures due to their low crystallinity and high anisotropic nature. However, the powder X-ray diffraction (XRD) analysis method is thought to be the most powerful means of understanding the interlayer structures of intercalant molecules. If a proper number of well-developed (00l) XRD peaks are available for such 2-D nanohybrids, the 1-D electron density along the crystallographic c-axis can be calculated via a Fourier transform analysis to obtain structural information about the orientations and arrangements of guest species in the interlayer space.

Keywords

References

  1. J. H. Choy, S. J. Choi, J. M. Oh, and T. Park, "Clay Minerals and Layered Double Hydroxides for Novel Biological Applications," Appl. Clay Sci., 36 [1-3] 122-32 (2007). https://doi.org/10.1016/j.clay.2006.07.007
  2. J. M. Oh, T. T. Biswick, and J. H. Choy, "Layered Nanomaterials for Green Materials," J. Mater. Chem., 19 [17] 2553-63 (2009). https://doi.org/10.1039/b819094a
  3. J. Y. Kim, I. Chung, J. H. Choy, and G. S. Park, "Macromolecular Nanoplatelet of Aurivillius-Type Layered Perovskite Oxide, $Bi_4Ti_3O_{12}$," Chem. Mater., 13 [9] 2759-61 (2001). https://doi.org/10.1021/cm0102436
  4. S. M. Paek, H. Jung, Y. J. Lee, M. Park, S. J. Hwang, and J. H. Choy, "Exfoliation and Reassembling Route to Mesoporous Titania Nanohybrids," Chem. Mater., 18 [5] 1134-40 (2006). https://doi.org/10.1021/cm052201d
  5. T. W. Kim, H. W. Ha, M. R. Paek, S. H. Hyun, I. H. Paek, J. H. Choy, and S. J. Hwang, "Mesoporous Iron Oxide-Layered Titanate Nanohybrids: Soft-Chemical Synthesis, Characterization, and Photocatalyst Application," J. Phys. Chem. C, 112 [38] 14853-62 (2008). https://doi.org/10.1021/jp805488h
  6. S. M. Paek, H. Jung, M. Park, J. K. Lee, and J. H. Choy, "An Inorganic Nanohybrid with High Specific Surface Area: $TiO_2$-Pillared $MoS_2$," Chem. Mater., 17 [13] 3492-98 (2005). https://doi.org/10.1021/cm0477220
  7. H. Lim, S. I. Yoon, G. Kim, A. R. Jang, and H. S. Shin, "Stacking of Two-Dimensional Materials in Lateral and Vertical Directions," Chem. Mater., 26 [17] 4891-903 (2014). https://doi.org/10.1021/cm502170q
  8. S. M. Auerbach, K. A. Carrado, and P. K. Dutta, Handbook of Layered Materials; pp. 1-539, CRC Press, New York, 2004.
  9. Q. Wang and D. O'Hare, "Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets," Chem. Rev., 112 [7] 4124-55 (2012). https://doi.org/10.1021/cr200434v
  10. D. H. Park, S. J. Hwang, J. M. Oh, J. H. Yang, and J. H. Choy, "Polymer-Inorganic Supramolecular Nanohybrids for Red, White, Green, and Blue Applications," Prog. Polym. Sci., 38 [10-11] 1442-86 (2013). https://doi.org/10.1016/j.progpolymsci.2013.05.007
  11. J. H. Choy, S. Y. Kwak, Y. S. Han, and B. W. Kim, "New Organo-Montmorillonite Complexes with Hydrophobic and Hydrophilic Functions," Mater. Lett., 33 [3-4] 143-47 (1997). https://doi.org/10.1016/S0167-577X(97)00092-X
  12. J. H. Choy, "Intercalative Route to Heterostructured Nanohybrid," J. Phys. Chem. Solids, 65 [2-3] 373-83 (2004). https://doi.org/10.1016/j.jpcs.2003.10.047
  13. M. Ogawa and K. Kuroda, "Photofunctions of Intercalation Compounds," Chem. Rev., 95 [2] 399-438 (1995). https://doi.org/10.1021/cr00034a005
  14. M. S. Whittingham, and A. J. Jacobson, Intercalation Chemistry; pp. 1-100, 229-360, 573-89, Academic Press, New York, 1982.
  15. D. W. Bruce and D. O'Hare, Inorganic Materials; 2nd Eds, pp. 171-254, 313-76, John Wiley & Sons Ltd, West Sussex, England, 1997.
  16. S. M. Paek, J. M. Oh, and J. H. Choy, "A Lattice-Engineering Route to Heterostructured Functional Nanohybrids," Chem. Asian J., 6 [2] 324-38 (2011). https://doi.org/10.1002/asia.201000578
  17. E. R. Hitzky, P. Aranda, M. Darder, and G. Rytwo, "Hybrid Materials Based on Clays for Environmental and Biomedical Applications,", J. Mater. Chem., 20 [42] 9306-21 (2010). https://doi.org/10.1039/c0jm00432d
  18. J. L. Gunjakar, T. W. Kim, H. N. Kim, I. Y. Kim, and S. J. Hwang, "Mesoporous Layer-by-Layer Ordered Nanohybrids of Layered Double Hydroxide and Layered Metal Oxide: Highly Active Visible Light Photocatalysts with Improved Chemical Stability," J. Am. Chem. Soc., 133 [38] 14998-5007 (2011). https://doi.org/10.1021/ja203388r
  19. J. L. Gunjakar, I. Y. Kim, J. M. Lee, N. S. Lee, and S. J. Hwang, "Self-Assembly of Layered Double Hydroxide 2d Nanoplates with Graphene Nanosheets: An Effective Way to Improve The Photocatalytic Activity of 2d Nanostructured Materials for Visible Light-Induced $O_2$ Generation," Energy Environ. Sci., 6 [3] 1008-17 (2013). https://doi.org/10.1039/c3ee23989f
  20. J. M. Oh, D. H. Park, and J. H. Choy, "Integrated Bio-Inorganic Hybrid Systems for Nano-Forensics," Chem. Soc. Rev., 40 [2] 583-95 (2011). https://doi.org/10.1039/C0CS00051E
  21. V. K. Mudhivarthi, A. Bhambhani, and C. V. Kumar, "Novel Enzyme/DNA/Inorganic Nanomaterials: A New Generation of Biocatalysts," Dalton Trans., [47] 5483-497 (2007).
  22. S. R Lee, M. Park, Y. S. Han, S. H. Hwang, and J. H. Choy, "Trivalent Atom Contribution on Solid−Solid Transformation of Ga13 Polycation Intercalated Clay into Sodalite Investigated by X-ray Absorption Spectroscopy," J. Phys. Chem. B, 109 [19] 9432-36 (2005). https://doi.org/10.1021/jp050011k
  23. Z. Zeng, D. Matuschek, A. Studer, C. Schwickert, R. Pottgen, and H. Eckert, "Synthesis and Characterization of Inorganic-Organic Hybrid Materials Based on the Intercalation of Stable Organic Radicals Into a Fluoromica Clay," Dalton Trans., 42 [24] 8585-96 (2013). https://doi.org/10.1039/c3dt50627d
  24. A. C. Gomes, S. M. Bruno, C. A. Gamelas, A. A. Valente, M. Abrantes, I. S. Goncalves, C. C. Romao, and M. Pillinger, "Intercalation of a Molybdenum ${\eta}^3$-Allyl Dicarbonyl Complex in a Layered Double Hydroxide and Catalytic Performance in Olefin Epoxidation," Dalton Trans., 42 [23] 8231-40 (2013). https://doi.org/10.1039/c3dt50132a
  25. S. Arias, J. G. Eon, R. A. S. San Gil, Y. E. Licea, L. A. Palacio, and A. C. Faro Jr., "Synthesis and Characterization of Terephthalate-Intercalated Nial Layered Double Hydroxides with High Al Content," Dalton Trans., 42 [6] 2084-93 (2013). https://doi.org/10.1039/C2DT31502E
  26. F Bergaya and G. Lagaly, Handbook of Clay Science 2nd Ed. Part A: Fundamentals; pp. 1-81, Elsevier, Amsterdam, 2013.
  27. F Bergaya and G. Lagaly, Handbook of Clay Science 2nd Ed. Part B: Techniques and Applications; pp. 1-423, Elsevier, Amsterdam, 2013.
  28. G. R. Williams and D. O'Hare, "Towards Understanding, Control and Application of Layered Double Hydroxide Chemistry," J. Mater. Chem., 16 [30] 3065-74 (2006). https://doi.org/10.1039/b604895a
  29. G. R. Williams, A. M. Fogg, J. Sloan, C. Tavio-Gueho, and D. O'Hare, "Staging during Anion-Exchange Intercalation into [$LiAl_2(OH)_6]Cl{\cdot}yH_2O$: Structural and Mechanistic Insights," Dalton Trans., [32] 3499-506 (2007).
  30. C. Tavio-Gueho, Y. Feng, A. Faour, and F. Leroux, "Intercalation Chemistry in a LDH System: Anion Exchange Process and Staging Phenomenon Investigated by Means of Time-Resolved, In Situ X-Ray Diffraction," Dalton Trans., [26] 5994-6005 (2010).
  31. D. H. Park, J. H. Yang, A. Vinu, A. Elzatahry, and J. H. Choy, "X-ray Diffraction and X-Ray Absorption Spectroscopic Analyses for Intercalative Nanohybrids with Low Crystallinity," Arab. J. Chem., 9 [2] 190-205 (2016). https://doi.org/10.1016/j.arabjc.2015.07.007
  32. V. Rives, Layered Double Hydroxides: Present and Future; pp. 2-215, Nova Science Publishers, Inc., New York, 2001.
  33. I. Park, Y. S. Han, and J. H. Choy, "Facile Exfoliation of Layered Titanoiobate ($KTiNbO_5$) into Colloidal Nanosheets," J. Nanosci. Nanotechnol., 9 [12] 7190-94 (2009).
  34. J. H. Choy, S. J. Kwon, and G. S. Park, "High-$T_c$ Superconductors in the 2D Limit : [$(Py-C_nH_{2n+1})_2HgI_4]-Bi_2Sr_2Ca_{m-1}Cu_mO_y$ (m=1 and 2)," Science, 280 [5369] 1589-92 (1998). https://doi.org/10.1126/science.280.5369.1589
  35. J. H. Choy, Y. I. Kim, and S. J. Hwang, "Superionic and Superconducting Nanohybrids with Hetero-Structure, $Ag_xI_w-Bi_2Sr_2Ca_{n-1}Cu_nO_y$ (0.76 £ x £ 1.17; n = 1, 2, and 3)," J. Phys. Chem. B, 102 [46] 9191-202 (1998). https://doi.org/10.1021/jp982402n
  36. T. Sasaki and M. Watanabe, "Osmotic Swelling to Exfoliation. Exceptionally High Degrees of Hydration of a Layered Titanate," J. Am. Chem. Soc., 120 [19] 4682-89 (1998). https://doi.org/10.1021/ja974262l
  37. R. Ma and T. Sasaki, "Nanosheets of Oxides and Hydroxides: Ultimate 2D Charge-Bearing Functional Crystallites," Adv. Mater., 22 [45] 5082-104 (2010). https://doi.org/10.1002/adma.201001722
  38. J. L. Gunjakar, I. Y. Kim, J. M. Lee, Y. K. Jo, and S. J. Hwang, "Exploration of Nanostructured Functional Materials Based on Hybridization of Inorganic 2D Nanosheets," J. Phys. Chem. C, 118 [8] 3847-63 (2014). https://doi.org/10.1021/jp410626y
  39. S. J. Kim, S. Lemaux, G. Demazeau, J. Y. Kim, and J. H. Choy, "$LaPdO_3$: the First PdIII Oxide with the Perovskite Structure," J. Am. Chem. Soc., 123 [42] 10413-14 (2001). https://doi.org/10.1021/ja016522b
  40. J. H. Choy, S. T. Hong, and K. S. Choi, "Crystal Structure, Magnetism and Phase Transformation in Perovskites $A_2CrNbO_6$ (A = Ca, Sr, Ba)," J. Chem. Soc. Faraday Trans., 92 [6] 1051-59 (1996). https://doi.org/10.1039/ft9969201051
  41. J. H. Choy, J. Y. Kim, S. J. Kim, J. S. Sohn, and O. H. Han, "New Dion-Jacobson-Type Layered Perovskite Oxyfluorides, $ASrNb_2O_6F$ (A = Li, Na, and Rb)," Chem. Mater., 13 [3] 906-12 (2001). https://doi.org/10.1021/cm000673g
  42. R. A. Young, The Rietveld Method; pp. 1-298, Oxford University Press, Oxford, 1993.
  43. J. H. Yang, Y. S. Han, M. Park, T. Park, S. J. Hwang, and J. H. Choy, "New Inorganic-Based Drug Delivery System of Indole-3-Acetic Acid-Layered Metal Hydroxide Nanohybrids with Controlled Release Rate," Chem. Mater., 19 [10] 2679-85 (2007). https://doi.org/10.1021/cm070259h
  44. H. Jung, H. M. Kim, Y. B. Choy, S. J. Hwang, and J. H. Choy, "Itraconazole-Laponite: Kinetics and Mechanism of Drug Release," Appl. Clay Sci., 40 [1-4] 99-107 (2008). https://doi.org/10.1016/j.clay.2007.09.002
  45. J. H. Yang, H. Jung, S. Y. Kim, and J. H. Choy, "Heterostructured Layered Aluminosilicate-Itraconazole Nanohybrid for Drug Delivery System," J. Nanosci. Nanotechnol., 13 7331-36 (2013). https://doi.org/10.1166/jnn.2013.8095
  46. J. H. Yang, H. Piao, A. Vinu, A. A. Elzatahry, S. M. Paek, and J. H. Choy, "$TiO_2$-Pillared Clays with Well-Ordered Porous Structure and Excellent Photocatalytic Activity," RSC Adv., 5 [11] 8210-15 (2015). https://doi.org/10.1039/C4RA12880J
  47. M. H. Kim, D. H. Park, J. H. Yang, Y. B. Choy, and J. H. Choy, "Drug-Inorganic-Polymer Nanohybrid for Transdermal Delivery," Int. J. Pharm, 444 [1-2] 120-27 (2013). https://doi.org/10.1016/j.ijpharm.2012.12.043
  48. J. Y. Kim, J. H. Yang, J. H. Lee, G. Choi, D. H. Park, M. R. Jo, S. J. Choi, and J. H. Choy, "2D Inorganic-Antimalarial Drug-Polymer Hybrid with pH Responsive Solubility," Chem. Asian J., 10 [10] 2264-71 (2015). https://doi.org/10.1002/asia.201500347
  49. J. G. Thompson and C. Cuff, "Crystal Structure of Kaolinite: Dimethylsulfoxide Intercalate," Clays Clay Miner., 33 [6] 490-500 (1985). https://doi.org/10.1346/CCMN.1985.0330603
  50. F. Thevenot, R. Szymanski, and P. Chaumette, "Preparation and Characterization of Al-Rich Zn-Al Hydrotalcite-Like Compounds," Clays Clay Miner., 37 [5] 396-402 (1989). https://doi.org/10.1346/CCMN.1989.0370502
  51. U. Costantino, F. Marmottini, M. Nocchetti, and R. Vivani, "New Synthetic Routes to Hydrotalcite-Like Compounds - Characterisation and Properties of the Obtained Materials," Eur. J. Inorg. Chem., 1998 [10] 1439-46 (1998). https://doi.org/10.1002/(SICI)1099-0682(199810)1998:10<1439::AID-EJIC1439>3.0.CO;2-1
  52. A. Ennadi, A. Legrouri, A. D. Roy, and J. P. Besse, "X-Ray Diffraction Pattern Simulation for Thermally Treated [Zn-Al-Cl] Layered Double HydroxideX-Ray Diffraction Pattern Simulation for Thermally Treated [Zn-Al-Cl] Layered Double HydroxideX-Ray Diffraction Pattern Simulation for Thermally Treated [Zn-Al-Cl] Layered Double Hydroxide," J. Solid State Chem., 152 [2] 568-72 (2000). https://doi.org/10.1006/jssc.2000.8740
  53. J. H. Choy, S. J. Hwang, and N. G. Park, "Intracrystalline Structure of Molecular Mercury Halide Intercalated in High-$T_c$ Superconducting Lattice of $Bi_2Sr_2CaCu_2O_y$," J. Am. Chem. Soc., 119 [7] 1624-33 (1997). https://doi.org/10.1021/ja961993x
  54. W. K. Kuks and Y. D. Huh, "Preferential Intercalation of Isomers of Anthraquinone Sulfonate Ions into Layered Double Hydroxides," J. Mater. Chem., 7 [9] 1933-36 (1997). https://doi.org/10.1039/a702349i
  55. A. V. Besserguenev, A. M. Fogg, R. J. Francis, S. J. Price, and D. O'Hare, "Synthesis and Structure of the Gibbsite Intercalation Compounds [$LiAl_2(OH)_6]X$ {X = Cl, Br, $NO_3$} and [$[LiAl_2(OH)_6]Cl{\cdot}H_2O$ Using Synchrotron X-ray and Neutron Powder Diffraction," Chem. Mater., 9 [1] 241-47 (1997). https://doi.org/10.1021/cm960316z
  56. C. P. Vicente, J. L. Tirado, K. Adouby, J. C. Jumas, A. A. Toure, and G. Kra, "X-ray Diffraction and 119Sn Mossbauer Spectroscopy Study of a New Phase in the $Bi_2Se_3-SnSe$ System: $SnBi_4Se_7$," Inorg. Chem., 38 [9] 2131-35 (1999). https://doi.org/10.1021/ic9812858
  57. P. Lavela, J. Morales, and J. L. Tirado, "Sodium Intercalation into $(PbS)_{1.18}(TiS_2)_2Misfit$ Layer CompoundSodium Intercalation into $(PbS)_{1.18}(TiS_2)_2Misfit$ Layer Compound-Sodium Intercalation into $(PbS)_{1.18}(TiS_2)_2Misfit$ Layer CompoundSodium Intercalation into ($(PbS)_{1.18}(TiS_2)_2$ Misfit Layer Compound," J. Solid State Chem., 124 [2] 238-43 (1996). https://doi.org/10.1006/jssc.1996.0232
  58. F. Leroux and C. Taviot-Gueho, "Fine Tuning between Organic and Inorganic Host Structure: New Trends in Layered Double Hydroxide Hybrid Assemblies," J. Mater. Chem., 15 [35-36] 3628-42 (2005). https://doi.org/10.1039/b505014f
  59. T. Itoh, T. Shichi, H. Takahashi, Y. Inui, and K. Takagi, "Reversible Color Changes in Lamella Hybrids of Poly(diacetylenecarboxylates) Incorporated in Layered Double Hydroxide Nanosheets," J. Phys. Chem. B, 109 [8] 3199-206 (2005). https://doi.org/10.1021/jp045410e
  60. Y.-J. Liu, J. L. Schindler, D. C. DeGroot, C. R. Kannewurf, W. Hirpo, and M. G. Kanatzidis, "Synthesis, Structure, and Reactions of Poly(ethylene oxide)/$V_2O_5$ Intercalative Nanocomposites," Chem. Mater., 8 [2] 525-34 (1996). https://doi.org/10.1021/cm950366o
  61. C. H. L. Kennard, "Practical Experiments in Crystallography. Structure Solution Using 'Patterson' Heavy-Atom Technique," J. Appl. Cryst., 5 382 (1972).
  62. P. Delatorre and W. F. de Azevedo Jr, "Simulation of Electron Density Ma3ps for Two-Dimensional Crystal Structures Using Mathematica," J. Appl. Cryst., 34 658-60 (2001). https://doi.org/10.1107/S0021889801009724
  63. M. F. C. Land and R. A. Palmer, Structure Determination by X-ray crystallography 3rd Ed; pp. 117-365, Plenum Press, New York, 1994.
  64. A. J. C. Wilson, E. Prince, International Tables for Crystallography, Vol. C, 2nd edition, pp. 554-89, Kluwer Academic Publishers, Boston/Dordrecht/London, 1999.
  65. Z. W. Su and P. pp. 554-589, Coppens, "Relativistic X-ray Elastic Scattering Factors for Neutral Atoms Z = 1-54 from Multiconfiguration Dirac-Fock Wavefunctions in the $0-12\AA^{-1}$ sin ${\theta}/l$ Range, and Six-Gaussian Analytical Expressions in the $0-6\AA^{-1}$ Range," Acta. Cryst., A53 749-62 (1997).
  66. V. K. Pecharsky and P. Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials; pp.1-346, Springer, New York, 2005.
  67. M. Uehara, A. Yamazaki, T. Umezawa, K. Takahashi, and S. Tsutsumi, "A Nickel Hydroxide-Vermiculite Complex: Preparation and Characterization," Clays Clay Miner., 47 [6] 726-31 (1999). https://doi.org/10.1346/CCMN.1999.0470606
  68. J. H. Choy, Y. I. Kim, S. J. Hwang, Y. Muraoka, N. Ohnishi, K. Hiraga, and P. V. Huong, "HRTEM and Micro- Raman Studies on Superconducting-Superionic Conducting Nanohybrid, $Ag_{1.17}I_{1.54}Bi_2Sr_2CaCu_2O_y$," J. Phys. Chem. B, 104 [39] 9086-90 (2000). https://doi.org/10.1021/jp993096w
  69. A. Arguelles, M. Leoni, J. A. Blanco, and C. Marcos, "Semi-Ordered Crystalline Structure of the Santa Olalla Vermiculite Inferred from X-ray Powder Diffraction," Am. Mineral., 95 [1] 126-34 (2010). https://doi.org/10.2138/am.2010.3249
  70. R. Marangoni, C. Taviot-Gueho C, A. Illaik, F. Wypych, and F. Leroux, "Organic Inorganic Dye Filler for Polymer: Blue-Coloured Layered Double Hydroxides into Polystyrene," J. Colloid Interface Sci., 326 [2] 366-73 (2008). https://doi.org/10.1016/j.jcis.2008.06.030
  71. T. Fujita, N. Iyi, T. Kosugi, A. Ando, T. Deguchi, and T. Sota, "Intercalation Characteristics of Rhodamine 6G in Fluor-Taeniolite: Orientation in the Gallery," Clays Clay Miner., 45 [1] 77-84 (1997). https://doi.org/10.1346/CCMN.1997.0450109
  72. J. M. Adams, J. M. Thomas, and M. J. Walters, "Surface and Intercalate Chemistry of the Layered Silicates. Part VI. Tetrahydrofuran Intercalates of a Series of Cation-Exchanged Montmorillonites," J. Chem. Soc. Dalton, [2] 112-15 (1976).
  73. J. M. Adams, "Surface and Intercalate Chemistry of Layered Silicates. Part III. X-Ray Investigation of Tetrahydropyran and 1,4-Dioxan Intercalates of Montmorillonite," J. Chem. Soc. Dalton, [20] 2286-88 (1974).
  74. J. Rodriguez-Carvajal, Fullprof Computer Program, https://www.ill.eu/?id=2527. Accessed on 29/06/2016.
  75. J. Bauer, P. Behrens, M. Speckbacher, and H. Langhals, "Composites of Perylene Chromophores and Layered Double Hydroxides: Direct Synthesis, Characterization, and Photo- and Chemical Stability," Adv. Funct. Mater., 13 [3] 241-48 (2003). https://doi.org/10.1002/adfm.200390036
  76. W. Katinonkul and M. M. Lerner, "The First Synthesis of a Graphite Bis(Oxalato)Borate Intercalation Compound," J. Phys. Chem. Solids, 68 [3] 394-99 (2007). https://doi.org/10.1016/j.jpcs.2006.11.032
  77. E. Kafunkova, K. Lang, P. Kubat, M. Klementova, J. Mosinger, M. Slouf, A. L. Troutier-Thuilliez, F. Leroux, V. Verney, and C. Taviot-Gueho, "Porphyrin-Layered Double Hydroxide/Polymer Composites as Novel Ecological Photoactive Surfaces," J. Mater. Chem., 20 [42] 9423-32 (2010). https://doi.org/10.1039/c0jm00746c
  78. H. Kang, H. J. Kim, J. H. Yang, T. H. Kim, G. Choi, S. M. Paek, A. J. Choi, J. H. Choy, and J. M. Oh, "Intracrystalline Structure and Release Pattern of Ferulic Acid Intercalated into Layered Double Hydroxide through Various Synthesis Routes," Appl. Clay Sci., 112-113 32-9 (2015). https://doi.org/10.1016/j.clay.2015.04.015
  79. A. M. Fogg, J. S. Dunn, and D. O'Hare, "Formation of Second-Stage Intermediates in Anion-Exchange Intercalation Reactions of the Layered Double Hydroxide $[LiAl_2(OH)_6]Cl{\cdot}H_2O$ As Observed by Time-Resolved, in Situ X-ray Diffraction," Chem. Mater., 10 [1] 356-60 (1998). https://doi.org/10.1021/cm970553h
  80. G. R. Williams, A. J. Norquist, and D. O'Hare, "Time-Resolved, In Situ X-ray Diffraction Studies of Staging during Phosphonic Acid Intercalation into $[LiAl_2(OH)_6]Cl{\cdot}H_2O$," Chem. Mater., 16 [6] 975-81 (2004). https://doi.org/10.1021/cm0350434
  81. K. Simmance, W. van Beek, and G. Sankar, "Time Resolved In Situ X-Ray Diffraction Study of Crystallisation Processes of Large Pore Nanoporous Aluminophosphate Materials," Faraday Discuss., 177 237-47 (2015). https://doi.org/10.1039/C4FD00179F

Cited by

  1. Intercalation of Primary Alcohols into Layered Titanoniobates vol.56, pp.15, 2017, https://doi.org/10.1021/acs.inorgchem.7b01135