DOI QR코드

DOI QR Code

Effect on the Measurement of Trace Element by Pressure Bomb and Conventional Teflon Vial Methods in the Digestion Technique

압력용기 산분해법과 테플론 바이알에서의 산분해법이 미량원소의 함량측정에 미치는 영향

  • Lee, Seung-Gu (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Taehoon (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Tanaka, Tsuyoshi (Center for Chronological Research, Nagoya University) ;
  • Lee, Seung Ryeol (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Jong Ik (Division of Polar Earth-System Sciences, Korea Polar Research Institute)
  • 이승구 (한국지질자원연구원 국토지질연구본부) ;
  • 김태훈 (한국지질자원연구원 국토지질연구본부) ;
  • ;
  • 이승렬 (한국지질자원연구원 국토지질연구본부) ;
  • 이종익 (극지연구소 극지지구시스템연구부)
  • Received : 2016.02.01
  • Accepted : 2016.03.07
  • Published : 2016.06.30

Abstract

Trace element abundances in the igneous rocks are important data for petrogenetic interpretation. Their concentrations are generally measured using ICP-MS from the dissolved solution. The acid digestion of rock powder can be performed by conventional teflon vial or pressure bomb. In this paper, we investigated a problem that happened during acid digestion experiment using conventional teflon vial or pressure bomb of BCR2 and GSP2 USGS rock standard materials. The results show that the measured concentrations of the elements like Cr, Ni, Zn, Ta, W in the BCR2 are different from the recommended values of USGS whereas those of the elements like Rb, Sr, Zr, Hf, Ta, W in the GSP2 are different from those values. Our experiment shows that defect of specific elements like Cr, Ni may happen during the sample digestion. Our results also indicate that the Cr, Ni, W, Zr, Hf, Ta concentration obtained based on an acid digestion of geological samples need to be careful in their geochemical interpretation.

화성암의 성인을 밝혀내는데 있어서 중요한 기초자료로서 지구화학적으로 중요한 의미를 가지는 미량원소의 함량은 대개는 암석가루의 산분해법에 의해 준비된 용액과 유도결합 플라즈마 질량분석기(ICP-MS)를 이용하여 측정한다. 이 때 암석가루의 산분해에는 일반적으로 테플론 바이알 혹은 압력용기를 이용한다. 이 논문에서는 미국지질조사소의 암석 표준시료인 BCR2, GSP2를 이용한 압력용기 혹은 테플론 바이알 산분해법 실험과정에서 발생될 수 있는 특정 미량원소의 손실 가능성에 대해 조사하였다. 실험결과, BCR2에서는 Cr, Ni, Zn, Ta, W의 변화가 제일 심했고, GSP2에서는 Rb, Sr, Zr, Hf, Ta, W 등에서 추천값(참고값)과 큰 차이를 보여주었다. 산분해 실험에 의한 화성암류내 W의 함량측정은 많은 주의가 필요하며, 이외에도 현무암류에서는 Cr과 Ni의 측정값에, 화강암류에서는 Zr, Hf, Ta의 측정값에 주의가 필요하다는 것을 확인할 수가 있었다.

Keywords

References

  1. Barrat, J.A., Yamaguchi, A., Greenwood, R.C., Bohn, M., Cotten, J., Benoit, M., and Franchi, I.A., 2007, The Stannern trend eucrites: Contamonation of main group eucritic magma by crustal partial melts. Geochimica et Cosmochimica Acta, 71, 4108-4124. https://doi.org/10.1016/j.gca.2007.06.001
  2. Budahn, J.R. and Wandless, G.A., 2002, Instrumental neutron activation by abbreviated count. In: J.E. Taggart, Jr. (Editor) Analytical methods for chemical analysis of geologic and other materials, U.S. Geological Survey Open File Report 02-223, Chapetr Y, Y1-Y9.
  3. Cotta, A.J.B. and Enzweiler, J., 2012, Classical and New Procedures of Whole Rock Dissolution for Trace Element Determination by ICP-MS. Geostandards and Geoanalytical Research. 36, 27-50. https://doi.org/10.1111/j.1751-908X.2011.00115.x
  4. Gill, R., 2010, Igneous rocks and processes: A practical guide. Wiley-Blackwell, 428p.
  5. Huang, F., Li, S., Dong, F., Li, Q., Chen, F., Wang, Y., and Yang, W., 2007, Recycling of deeply subducted continental crust in the Dabie Mountains, central China. Lithos, 2007, 151-169.
  6. Jenner, G.A., Longerich, H.P., Jackson, S.E., and Fryer, B.J., 1990, ICP-MS - A powerful tool for high-precision traceelement analysis in Earth science: evidence from analysis of selected U.S.G.S. reference samples. Chemical Geology, 83, 133-148. https://doi.org/10.1016/0009-2541(90)90145-W
  7. Jochum, K.P. and Enzweiler, J., 2014. Reference Materials in Geochemical and Environmental Research. Treatise on Geochemistry, 15, 43-70.
  8. Kim, T., Tanaka, T., Lee, S-G., Han, S., Yoo, I-S., Park, S-B., and Lee, J-I., 2014, Quantitative analysis of REEs in geological samples using ICP-MS: effect of oxide and hydroxide interference on REEs. Proceedings of Annual Joint Conference of the Petrological Society of Korea and Mineralogical Society of Korea, 29-30.
  9. Lee, S-G., Kim, T., Han, S., Kim, H-C., Lee, H-M., Tanaka, T., Lee, S-R., and Lee, J-I., 2014, Effect of zircon on rare-earth element determination of granitoids by ICP-MS. Journal of the Petrological Society of Korea, 23, 337-349. https://doi.org/10.7854/JPSK.2014.23.4.337
  10. Liang, Q., Jing, H., and Gregoire, D. C., 2000, Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51, 507-513. https://doi.org/10.1016/S0039-9140(99)00318-5
  11. Longerich, H.P., Jenner, G.A., Fryer, B.J., and Jackson, S.E., 1990, Inductively coupled plasma-mass spectrometric analysis of geochemical samples: a critical evaluation based on case studies. Chemical Geology, 83, 105-118. https://doi.org/10.1016/0009-2541(90)90143-U
  12. Madinabeitia, S.G., Lorda, M.E.S., and Ibarguchi, J.I.G., 2008, Simultaneous determination of major to ultratrace elements in geological samples by fusion-dissolution and inductively coupled plasma mass spectrometry techniques. Analytica Chinica Acta, 625, 117-130. https://doi.org/10.1016/j.aca.2008.07.024
  13. Masuda, A., 1975, Abundances of mono isotopic REE, consistent with the Leedey chondritic values. Geochemical Journal, 9, 183-184. https://doi.org/10.2343/geochemj.9.183
  14. Masuda, A., Nakamura, N., and Tanaka, T., 1973, Fine structure of mutually normalized rare earth patterns of chondrites. Geochimica et Cosmochimica Acta, 37, 239-248. https://doi.org/10.1016/0016-7037(73)90131-2
  15. Orihashi, Y. and Hirata, T., 2003, Rapid quantitative analysis of Y and REE abyndances in XRF glass bead for selected GSJ reference rock standards using Nd-YAG 266 nm UV laser ablation ICP-MS. Geochemical Journal, 37, 401-412. https://doi.org/10.2343/geochemj.37.401
  16. Park, C-S., Chin, H-S., Oh, H., Moon, J.H., and Cheong, C-S., 2011, Low dilution glass bead digestion technique for the trace element analysis of rock samples. Journal of the Petrological Society of Korea, 20, 161-172. https://doi.org/10.7854/JPSK.2011.20.3.161
  17. Park, C-S., Shin, H.S., Oh, H., Moon, J.H., Ho, H., and Cheong, C-S., 2013, Determination of Trace Elements in Geological Reference Materials G-3, GSP-2 and SGD-1a by Low-Dilution Glass Bead Digestion and ICP-MS. Geostandards and Geoanalytical Research. 37, 361-368. https://doi.org/10.1111/j.1751-908X.2012.00212.x
  18. Pearce, J.A., Harris, N.B.W., and Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpreatation of granitic rocks. Journal of Petrology, 25, 956-983. https://doi.org/10.1093/petrology/25.4.956
  19. Pourmand, A., Dauphas, N., and Ireland, T.J., 2012, A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc, and Y: Revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chemical Geology, 291, 38-54. https://doi.org/10.1016/j.chemgeo.2011.08.011
  20. Pretorious, W., Weis, D., Williams, G., Hanano, D., Kieffer, B., and Scoates, J., 2006, Complete trace elemental Characterisation of granitoid (USGS G-2, GSP-2) reference materials by high resolution inductively plasma-mass spectrometry. Geostandrad and Geoanalysis Research, 30, 39-54. https://doi.org/10.1111/j.1751-908X.2006.tb00910.x
  21. Raczek, I., Stoll, B., Hofmann, A.W., and Jochum, K.P., 2001. High-Precision Trace Element Data for the USGS Reference Materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, DTS-1, DTS-2, GSP-1 and GSP-2 by ID-TIMS and MIC-SSMS. Geostandrad Newsletter, 25, 77-86. https://doi.org/10.1111/j.1751-908X.2001.tb00789.x
  22. Sun, S-S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry (Editors). Magmatism in the Ocean Basins. Geological Society of London, pp. 313-345.
  23. Totland, M., Jarvis, I., and Jarvis, K.E., 1992, An assessment of dissolution techniques for the analysis of geological samples by plasma spectrometry. Chemical Geology, 95, 35-62. https://doi.org/10.1016/0009-2541(92)90042-4
  24. Vendemiatto, M.A. and Enzweiler, J., 2001. Routine Control of Accuracy in Silicate Rock Analysis by X-ray Fluorescence Spectrometry. Geostandrad Newsletter, 25, 283-291. https://doi.org/10.1111/j.1751-908X.2001.tb00604.x
  25. Weyer, S., Munker, C., Rehkamper, M., and Mezger, K., 2002. Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS. Chemical Geology, 187, 295-313. https://doi.org/10.1016/S0009-2541(02)00129-8
  26. Zhang, W., Hu, Z., Liu, Y., Chen, L., Chen, H., Li, M., Zhao, L., Hu, S., and Gao, S., 2012, Reassessment of HF/HNO3, decomposition Capability in the high-pressure digestion of felsic rocks for multi-element determination by ICP-MS. Geostandrad and Geoanalysis Research, 36, 271-289. https://doi.org/10.1111/j.1751-908X.2012.0156.x