DOI QR코드

DOI QR Code

Inhibition of advanced glycation end product formation by burdock root extract

우엉 뿌리 추출물의 최종당화산물 형성 억제 효능

  • Lee, Darye (Department of Food and Nutrition, Yeungnam University) ;
  • Kim, Choon Young (Department of Food and Nutrition, Yeungnam University)
  • 이다례 (영남대학교 식품영양학과) ;
  • 김춘영 (영남대학교 식품영양학과)
  • Received : 2016.05.09
  • Accepted : 2016.07.11
  • Published : 2016.08.31

Abstract

Purpose: Diabetic complications are a major concern to manage progression of diabetes. Production of advanced glycation end products (AGEs) due to high blood glucose is one of the mechanisms leading to diabetic complications. Multiple pharmacologic AGE inhibitory agents are currently under development, but clinical applications are still limited due to safety issues. Thus, it is necessary to identify a safe anti-glycation agent. It is known that burdock roots have antioxidant, anti-inflammatory, and anti-cancer activities. The objective of the present study was to investigate the inhibitory role of burdock roots on the formation of high glucose-induced glycation of bovine serum albumin (BSA). Methods: In this study, glycation of BSA by glucose, galactose, or fructose at $37^{\circ}C$ for 3 weeks was assessed based on levels of ${\alpha}$-dicarbonyl compounds (early-stage glycation products), fructosamine (intermediate products of glycation), and fluorescent AGEs (late-stage glycation products). In order to compare the inhibitory actions of burdock root extract in AGE formation, aminoguanidine (AG), a pharmacological AGE inhibitor, was used as a positive control. Results: BSA glycation by glucose, fructose, and galatose was dose- and time-dependently produced. Burdock root extract at a concentration of 4 mg/mL almost completely inhibited glucose-induced BSA glycation. The results demonstrate that burdock root extract inhibited AGE formation with an $IC_{50}$ value of 1.534 mg/mL, and inhibitory activity was found to be more effective than the standard anti-glycation agent aminoguanidine. This study identified a novel function of burdock root as a potential anti-glycation agent. Conclusion: Our findings suggest that burdock root could be beneficial for preventing diabetic complications.

항산화, 항암 및 항염증 효능 등의 생리 활성이 보고된 우엉 뿌리의 열수 추출물을 제조하여 advanced glycation end products (AGEs) 형성 저해 효과를 확인하였다. AGEs는 bovine serum albumin (BSA)과 단당류인 glucose, fructose, galactose를 혼합하여 $37^{\circ}C$에서 3주간 배양하여 생성하였고 매주 형광도 측정, fructosamine 분석, ${\alpha}$-dicarbonyl compounds 함량 분석을 통해 AGEs의 생성량을 확인하였다. 우엉 뿌리 추출물의 AGEs 생성 저해능을 AGEs 생성 억제제로 알려져 있는 aminoguanidine (AG)의 저해능과 비교하였다. 우엉 뿌리 추출물은 BSA와 단당류인 glucose, fructose, galactose 각각의 당화반응을 억제하였으며 특히 배양 3주차에서 BSA와 glucose의 당화반응 결과물인 AGEs 생성을 유의적으로 저해하였다. 농도 2 mg/mL 이상의 우엉 뿌리 추출물은 1 mM AG보다 AGEs 생성 저해능이 우수하였으며 농도 4 mg/mL의 우엉 뿌리 추출물은 배양 3주차에서 AGEs 생성을 약 80% 이상 억제하는 효능을 나타냈다. 체내 혈당은 당뇨병과 같은 질환과 식이의 영향을 받으므로 다양한 glucose 농도에서 우엉 뿌리 추출물의 AGEs 생성 억제능을 조사하였다. 그 결과 AGEs 생성은 glucose의 농도에 비례하여 증가하였으며 우엉 뿌리 추출물은 당뇨환자의 식후에 관찰되는 혈당인 25 mM glucose 군에서 1 mM의 AG보다 높은 우수한 저해 효과를 확인하였다. 본 연구 결과는 우엉 뿌리 추출물의 AGEs 생성 억제라는 새로운 기능성을 밝히며 향후 당뇨 합병증 예방 효능을 가진 기능성 식품으로의 개발 가능성을 제시한다.

Keywords

References

  1. Dunkley AJ, Bodicoat DH, Greaves CJ, Russell C, Yates T, Davies MJ, Khunti K. Diabetes prevention in the real world: effectiveness of pragmatic lifestyle interventions for the prevention of type 2 diabetes and of the impact of adherence to guideline recommendations: a systematic review and meta-analysis. Diabetes Care 2014; 37(4): 922-933. https://doi.org/10.2337/dc13-2195
  2. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 2014; 103(2): 137-149. https://doi.org/10.1016/j.diabres.2013.11.002
  3. Jeon JY, Ko SH, Kwon HS, Kim NH, Kim JH, Kim CS, Song KH, Won JC, Lim S, Choi SH, Jang MJ, Kim Y, Oh K, Kim DJ, Cha BY; Taskforce Team of Diabetes Fact Sheet of the Korean Diabetes Association. Prevalence of diabetes and prediabetes according to fasting plasma glucose and HbA1c. Diabetes Metab J 2013; 37(5): 349-357. https://doi.org/10.4093/dmj.2013.37.5.349
  4. Jeon JY, Kim DJ, Ko SH, Kwon HS, Lim S, Choi SH, Kim CS, An JH, Kim NH, Won JC, Kim JH, Cha BY, Song KH; Taskforce Team of Diabetes Fact Sheet of the Korean Diabetes Association. Current status of glycemic control of patients with diabetes in Korea: the fifth Korea national health and nutrition examination survey. Diabetes Metab J 2014; 38(3): 197-203. https://doi.org/10.4093/dmj.2014.38.3.197
  5. Bogdanov VY, Osterud B. Cardiovascular complications of diabetes mellitus: the tissue factor perspective. Thromb Res 2010; 125(2): 112-118. https://doi.org/10.1016/j.thromres.2009.06.033
  6. Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes 2008; 26(2): 77-82. https://doi.org/10.2337/diaclin.26.2.77
  7. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR; UKPDS GROUP. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 2003; 63(1): 225-232. https://doi.org/10.1046/j.1523-1755.2003.00712.x
  8. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 2002; 287(19): 2570-2581. https://doi.org/10.1001/jama.287.19.2570
  9. Almdal T, Scharling H, Jensen JS, Vestergaard H. The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13,000 men and women with 20 years of follow-up. Arch Intern Med 2004; 164(13): 1422- 1426. https://doi.org/10.1001/archinte.164.13.1422
  10. Ceriello A, Testa R. Antioxidant anti-inflammatory treatment in type 2 diabetes. Diabetes Care 2009; 32 Suppl 2: S232-S236. https://doi.org/10.2337/dc09-S316
  11. Cooper ME, Bonnet F, Oldfield M, Jandeleit-Dahm K. Mechanisms of diabetic vasculopathy: an overview. Am J Hypertens 2001; 14(5 Pt 1): 475-486. https://doi.org/10.1016/S0895-7061(00)01323-6
  12. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058-1070. https://doi.org/10.1161/CIRCRESAHA.110.223545
  13. Gugliucci A. Glycation as the glucose link to diabetic complications. J Am Osteopath Assoc 2000; 100(10): 621-634.
  14. Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 2014; 18(1): 1-14. https://doi.org/10.4196/kjpp.2014.18.1.1
  15. Baynes JW. The role of AGEs in aging: causation or correlation. Exp Gerontol 2001; 36(9): 1527-1537. https://doi.org/10.1016/S0531-5565(01)00138-3
  16. Vlassara H, Uribarri J. Advanced glycation end products (AGE) and diabetes: cause, effect, or both? Curr Diab Rep 2014; 14(1):453-464. https://doi.org/10.1007/s11892-013-0453-1
  17. Schleicher E, Friess U. Oxidative stress, AGE, and atherosclerosis. Kidney Int Suppl 2007; (106): S17-S26.
  18. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40(4): 405-412. https://doi.org/10.2337/diabetes.40.4.405
  19. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2002; 23(5): 599-622. https://doi.org/10.1210/er.2001-0039
  20. Brownlee M, Vlassara H, Kooney A, Ulrich P, Cerami A. Aminoguanidine prevents diabetes-induced arterial wall protein crosslinking. Science 1986; 232(4758): 1629-1632. https://doi.org/10.1126/science.3487117
  21. Thornalley PJ. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys 2003; 419(1): 31-40. https://doi.org/10.1016/j.abb.2003.08.013
  22. Viberti G, Slama G, Pozza G, Czyzyk A, Bilous RW, Gries A, Keen H, Fuller JH, Menzinger G; Steering Committee. Safety Committee. Early closure of European Pimagedine trial. Lancet 1997; 350(9072): 214-215. https://doi.org/10.1016/S0140-6736(97)26029-0
  23. Pari L, Saravanan G. Antidiabetic effect of cogent db, a herbal drug in alloxan-induced diabetes mellitus. Comp Biochem Physiol C Toxicol Pharmacol 2002; 131(1): 19-25. https://doi.org/10.1016/S1532-0456(01)00259-9
  24. Zhao F, Wang L, Liu K. In vitro anti-inflammatory effects of arctigenin, a lignan from Arctium lappa L., through inhibition on iNOS pathway. J Ethnopharmacol 2009; 122(3): 457-462. https://doi.org/10.1016/j.jep.2009.01.038
  25. Maruta Y, Kawabata J, Niki R. Antioxidative caffeoylquinic acid derivatives in the roots of burdock (Arctium lappa L.). J Agric Food Chem 1995; 43(10): 2592-2595. https://doi.org/10.1021/jf00058a007
  26. Chan YS, Cheng LN, Wu JH, Chan E, Kwan YW, Lee SM, Leung GP, Yu PH, Chan SW. A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology 2011; 19(5): 245-254. https://doi.org/10.1007/s10787-010-0062-4
  27. Kim M, Lee Y, Sohn H. Anti-thrombosis and anti-oxidative activity of the root of Arctium lappa L. Korean J Food Preserv 2014; 21(5): 727-734. https://doi.org/10.11002/kjfp.2014.21.5.727
  28. de Almeida AB, Luiz-Ferreira A, Cola M, Di Pietro Magri L, Batista LM, de Paiva JA, Trigo JR, Souza-Brito AR. Anti-ulcerogenic mechanisms of the sesquiterpene lactone onopordopicrinenriched fraction from Arctium lappa L. (Asteraceae): role of somatostatin, gastrin, and endogenous sulfhydryls and nitric oxide. J Med Food 2012; 15(4): 378-383. https://doi.org/10.1089/jmf.2011.0025
  29. Sugiura Y, Torii T, Matsuda K, Yamada Y. Anti-allergic effects of extracts from commercial products of cooked burdock. Food Sci Technol Res 2009; 15(4): 423-426. https://doi.org/10.3136/fstr.15.423
  30. Wu J, Hsieh C, Wang H, Chen H. Inhibitory effects of guava (Psidium guajava L.) leaf extracts and its active compounds on the glycation process of protein. Food Chem 2009; 113: 78-84. https://doi.org/10.1016/j.foodchem.2008.07.025
  31. Wells-Knecht KJ, Zyzak DV, Litchfield JE, Thorpe SR, Baynes JW. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry 1995; 34(11): 3702- 3709. https://doi.org/10.1021/bi00011a027
  32. Yeboah FK, Alli I, Yaylayan VA. Reactivities of D-glucose and Dfructose during glycation of bovine serum albumin. J Agric Food Chem 1999; 47(8): 3164-3172. https://doi.org/10.1021/jf981289v
  33. Munch G, Taneli Y, Schraven E, Schindler U, Schinzel R, Palm D, Riederer P. The cognition-enhancing drug tenilsetam is an inhibitor of protein crosslinking by advanced glycosylation. J Neural Transm Park Dis Dement Sect 1994; 8(3): 193-208. https://doi.org/10.1007/BF02260940
  34. Ledesma-Osuna AI, Ramos-Clamont G, Vazquez-Moreno L. Characterization of bovine serum albumin glycated with glucose, galactose and lactose. Acta Biochim Pol 2008; 55(3): 491-497.
  35. Kontogianni VG, Charisiadis P, Margianni E, Lamari FN, Gerothanassis IP, Tzakos AG. Olive leaf extracts are a natural source of advanced glycation end product inhibitors. J Med Food 2013; 16(9): 817-822. https://doi.org/10.1089/jmf.2013.0016
  36. Hori M, Yagi M, Nomoto K, Shimode A, Ogura M, Yonei Y. Inhibition of advanced glycation end product formation by herbal teas and its relation to anti-skin aging. Anti Aging Med 2012; 9(6): 135-148.
  37. Jariyapamornkoon N, Yibchok-anun S, Adisakwattana S. Inhibition of advanced glycation end products by red grape skin extract and its antioxidant activity. BMC Complement Altern Med 2013; 13(1): 171-179. https://doi.org/10.1186/1472-6882-13-171
  38. Meslas M, Navarro M, Gokmen V, Morales FJ. Antiglycative effect of fruit and vegetable seed extracts: inhibition of AGE formation and carbonyl-trapping abilities. J Sci Food Agric 2013; 93(8): 2037-2044. https://doi.org/10.1002/jsfa.6012
  39. Predes FS, Ruiz AL, Carvalho JE, Foglio MA, Dolder H. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts. BMC Complement Altern Med 2011; 11(1): 25-29. https://doi.org/10.1186/1472-6882-11-25
  40. Kim J, Jeong IH, Kim CS, Lee YM, Kim JM, Kim JS. Chlorogenic acid inhibits the formation of advanced glycation end products and associated protein cross-linking. Arch Pharm Res 2011; 34(3): 495-500. https://doi.org/10.1007/s12272-011-0319-5
  41. Gugliucci A, Bastos DH, Schulze J, Souza MF. Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins. Fitoterapia 2009; 80(6): 339-344. https://doi.org/10.1016/j.fitote.2009.04.007

Cited by

  1. 떫은감과 포제 떫은감의 최종당화산물 생성 억제를 통한 피부 탄력 개선 효과 vol.32, pp.4, 2017, https://doi.org/10.6116/kjh.2017.32.4.17
  2. 떫은감과 포제 떫은감의 최종당화산물 생성 억제를 통한 피부 탄력 개선 효과 vol.32, pp.4, 2017, https://doi.org/10.6116/kjh.2017.32.4.17
  3. 산수유의 최종당화산물 억제로 인한 주름 개선효과 vol.32, pp.5, 2016, https://doi.org/10.6116/kjh.2017.32.5.1
  4. Antiglycoxidative Properties of Extracts and Fractions from Reynoutria Rhizomes vol.13, pp.11, 2016, https://doi.org/10.3390/nu13114066