References
- Dunkley AJ, Bodicoat DH, Greaves CJ, Russell C, Yates T, Davies MJ, Khunti K. Diabetes prevention in the real world: effectiveness of pragmatic lifestyle interventions for the prevention of type 2 diabetes and of the impact of adherence to guideline recommendations: a systematic review and meta-analysis. Diabetes Care 2014; 37(4): 922-933. https://doi.org/10.2337/dc13-2195
- Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 2014; 103(2): 137-149. https://doi.org/10.1016/j.diabres.2013.11.002
- Jeon JY, Ko SH, Kwon HS, Kim NH, Kim JH, Kim CS, Song KH, Won JC, Lim S, Choi SH, Jang MJ, Kim Y, Oh K, Kim DJ, Cha BY; Taskforce Team of Diabetes Fact Sheet of the Korean Diabetes Association. Prevalence of diabetes and prediabetes according to fasting plasma glucose and HbA1c. Diabetes Metab J 2013; 37(5): 349-357. https://doi.org/10.4093/dmj.2013.37.5.349
- Jeon JY, Kim DJ, Ko SH, Kwon HS, Lim S, Choi SH, Kim CS, An JH, Kim NH, Won JC, Kim JH, Cha BY, Song KH; Taskforce Team of Diabetes Fact Sheet of the Korean Diabetes Association. Current status of glycemic control of patients with diabetes in Korea: the fifth Korea national health and nutrition examination survey. Diabetes Metab J 2014; 38(3): 197-203. https://doi.org/10.4093/dmj.2014.38.3.197
- Bogdanov VY, Osterud B. Cardiovascular complications of diabetes mellitus: the tissue factor perspective. Thromb Res 2010; 125(2): 112-118. https://doi.org/10.1016/j.thromres.2009.06.033
- Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes 2008; 26(2): 77-82. https://doi.org/10.2337/diaclin.26.2.77
- Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR; UKPDS GROUP. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 2003; 63(1): 225-232. https://doi.org/10.1046/j.1523-1755.2003.00712.x
- Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 2002; 287(19): 2570-2581. https://doi.org/10.1001/jama.287.19.2570
- Almdal T, Scharling H, Jensen JS, Vestergaard H. The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13,000 men and women with 20 years of follow-up. Arch Intern Med 2004; 164(13): 1422- 1426. https://doi.org/10.1001/archinte.164.13.1422
- Ceriello A, Testa R. Antioxidant anti-inflammatory treatment in type 2 diabetes. Diabetes Care 2009; 32 Suppl 2: S232-S236. https://doi.org/10.2337/dc09-S316
- Cooper ME, Bonnet F, Oldfield M, Jandeleit-Dahm K. Mechanisms of diabetic vasculopathy: an overview. Am J Hypertens 2001; 14(5 Pt 1): 475-486. https://doi.org/10.1016/S0895-7061(00)01323-6
- Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058-1070. https://doi.org/10.1161/CIRCRESAHA.110.223545
- Gugliucci A. Glycation as the glucose link to diabetic complications. J Am Osteopath Assoc 2000; 100(10): 621-634.
- Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 2014; 18(1): 1-14. https://doi.org/10.4196/kjpp.2014.18.1.1
- Baynes JW. The role of AGEs in aging: causation or correlation. Exp Gerontol 2001; 36(9): 1527-1537. https://doi.org/10.1016/S0531-5565(01)00138-3
- Vlassara H, Uribarri J. Advanced glycation end products (AGE) and diabetes: cause, effect, or both? Curr Diab Rep 2014; 14(1):453-464. https://doi.org/10.1007/s11892-013-0453-1
- Schleicher E, Friess U. Oxidative stress, AGE, and atherosclerosis. Kidney Int Suppl 2007; (106): S17-S26.
- Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40(4): 405-412. https://doi.org/10.2337/diabetes.40.4.405
- Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2002; 23(5): 599-622. https://doi.org/10.1210/er.2001-0039
- Brownlee M, Vlassara H, Kooney A, Ulrich P, Cerami A. Aminoguanidine prevents diabetes-induced arterial wall protein crosslinking. Science 1986; 232(4758): 1629-1632. https://doi.org/10.1126/science.3487117
- Thornalley PJ. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys 2003; 419(1): 31-40. https://doi.org/10.1016/j.abb.2003.08.013
- Viberti G, Slama G, Pozza G, Czyzyk A, Bilous RW, Gries A, Keen H, Fuller JH, Menzinger G; Steering Committee. Safety Committee. Early closure of European Pimagedine trial. Lancet 1997; 350(9072): 214-215. https://doi.org/10.1016/S0140-6736(97)26029-0
- Pari L, Saravanan G. Antidiabetic effect of cogent db, a herbal drug in alloxan-induced diabetes mellitus. Comp Biochem Physiol C Toxicol Pharmacol 2002; 131(1): 19-25. https://doi.org/10.1016/S1532-0456(01)00259-9
- Zhao F, Wang L, Liu K. In vitro anti-inflammatory effects of arctigenin, a lignan from Arctium lappa L., through inhibition on iNOS pathway. J Ethnopharmacol 2009; 122(3): 457-462. https://doi.org/10.1016/j.jep.2009.01.038
- Maruta Y, Kawabata J, Niki R. Antioxidative caffeoylquinic acid derivatives in the roots of burdock (Arctium lappa L.). J Agric Food Chem 1995; 43(10): 2592-2595. https://doi.org/10.1021/jf00058a007
- Chan YS, Cheng LN, Wu JH, Chan E, Kwan YW, Lee SM, Leung GP, Yu PH, Chan SW. A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology 2011; 19(5): 245-254. https://doi.org/10.1007/s10787-010-0062-4
- Kim M, Lee Y, Sohn H. Anti-thrombosis and anti-oxidative activity of the root of Arctium lappa L. Korean J Food Preserv 2014; 21(5): 727-734. https://doi.org/10.11002/kjfp.2014.21.5.727
- de Almeida AB, Luiz-Ferreira A, Cola M, Di Pietro Magri L, Batista LM, de Paiva JA, Trigo JR, Souza-Brito AR. Anti-ulcerogenic mechanisms of the sesquiterpene lactone onopordopicrinenriched fraction from Arctium lappa L. (Asteraceae): role of somatostatin, gastrin, and endogenous sulfhydryls and nitric oxide. J Med Food 2012; 15(4): 378-383. https://doi.org/10.1089/jmf.2011.0025
- Sugiura Y, Torii T, Matsuda K, Yamada Y. Anti-allergic effects of extracts from commercial products of cooked burdock. Food Sci Technol Res 2009; 15(4): 423-426. https://doi.org/10.3136/fstr.15.423
- Wu J, Hsieh C, Wang H, Chen H. Inhibitory effects of guava (Psidium guajava L.) leaf extracts and its active compounds on the glycation process of protein. Food Chem 2009; 113: 78-84. https://doi.org/10.1016/j.foodchem.2008.07.025
- Wells-Knecht KJ, Zyzak DV, Litchfield JE, Thorpe SR, Baynes JW. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry 1995; 34(11): 3702- 3709. https://doi.org/10.1021/bi00011a027
- Yeboah FK, Alli I, Yaylayan VA. Reactivities of D-glucose and Dfructose during glycation of bovine serum albumin. J Agric Food Chem 1999; 47(8): 3164-3172. https://doi.org/10.1021/jf981289v
- Munch G, Taneli Y, Schraven E, Schindler U, Schinzel R, Palm D, Riederer P. The cognition-enhancing drug tenilsetam is an inhibitor of protein crosslinking by advanced glycosylation. J Neural Transm Park Dis Dement Sect 1994; 8(3): 193-208. https://doi.org/10.1007/BF02260940
- Ledesma-Osuna AI, Ramos-Clamont G, Vazquez-Moreno L. Characterization of bovine serum albumin glycated with glucose, galactose and lactose. Acta Biochim Pol 2008; 55(3): 491-497.
- Kontogianni VG, Charisiadis P, Margianni E, Lamari FN, Gerothanassis IP, Tzakos AG. Olive leaf extracts are a natural source of advanced glycation end product inhibitors. J Med Food 2013; 16(9): 817-822. https://doi.org/10.1089/jmf.2013.0016
- Hori M, Yagi M, Nomoto K, Shimode A, Ogura M, Yonei Y. Inhibition of advanced glycation end product formation by herbal teas and its relation to anti-skin aging. Anti Aging Med 2012; 9(6): 135-148.
- Jariyapamornkoon N, Yibchok-anun S, Adisakwattana S. Inhibition of advanced glycation end products by red grape skin extract and its antioxidant activity. BMC Complement Altern Med 2013; 13(1): 171-179. https://doi.org/10.1186/1472-6882-13-171
- Meslas M, Navarro M, Gokmen V, Morales FJ. Antiglycative effect of fruit and vegetable seed extracts: inhibition of AGE formation and carbonyl-trapping abilities. J Sci Food Agric 2013; 93(8): 2037-2044. https://doi.org/10.1002/jsfa.6012
- Predes FS, Ruiz AL, Carvalho JE, Foglio MA, Dolder H. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts. BMC Complement Altern Med 2011; 11(1): 25-29. https://doi.org/10.1186/1472-6882-11-25
- Kim J, Jeong IH, Kim CS, Lee YM, Kim JM, Kim JS. Chlorogenic acid inhibits the formation of advanced glycation end products and associated protein cross-linking. Arch Pharm Res 2011; 34(3): 495-500. https://doi.org/10.1007/s12272-011-0319-5
- Gugliucci A, Bastos DH, Schulze J, Souza MF. Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins. Fitoterapia 2009; 80(6): 339-344. https://doi.org/10.1016/j.fitote.2009.04.007
Cited by
- 떫은감과 포제 떫은감의 최종당화산물 생성 억제를 통한 피부 탄력 개선 효과 vol.32, pp.4, 2017, https://doi.org/10.6116/kjh.2017.32.4.17
- 떫은감과 포제 떫은감의 최종당화산물 생성 억제를 통한 피부 탄력 개선 효과 vol.32, pp.4, 2017, https://doi.org/10.6116/kjh.2017.32.4.17
- 산수유의 최종당화산물 억제로 인한 주름 개선효과 vol.32, pp.5, 2016, https://doi.org/10.6116/kjh.2017.32.5.1
- Antiglycoxidative Properties of Extracts and Fractions from Reynoutria Rhizomes vol.13, pp.11, 2016, https://doi.org/10.3390/nu13114066