DOI QR코드

DOI QR Code

반응표면분석법을 사용한 가속 용매 추출에 의한 홍삼 지표성분의 추출 최적화

Optimization of Extraction of Marker Compounds from Red Ginsengs by Accelerated Solvent Extraction Using Response Surface Methodology

  • 김은옥 (한국과학기술연구원 강릉분원 천연물융합연구센터) ;
  • 서구량 (한국과학기술연구원 강릉분원 천연물융합연구센터) ;
  • 엄병헌 (한국과학기술연구원 강릉분원 천연물융합연구센터)
  • Kim, Eun Ok (Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute) ;
  • Xu, Jiu Liang (Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute) ;
  • Um, Byung Hun (Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute)
  • 투고 : 2016.04.05
  • 심사 : 2016.06.13
  • 발행 : 2016.08.31

초록

본 연구에서는 기능성 홍삼 엑기스 제조를 위해 추출용매, 압력, 온도, 추출시간을 조절하여 가속 용매 추출한 후 기능성 홍삼제품의 지표성분인 진세노사이드 함량, 총페놀화합물 및 벤조피렌 함량 등을 조사하였다. 홍삼 가속 용매 추출 최적화를 위한 독립변수 선택을 위해 에탄올 농도, 압력, 온도 및 추출시간에 따른 기능성 홍삼제품의 지표성분인 진세노사이드 Rb1, Rg1 및 Rg3(20S) 함량의 합을 분석하여 진세노사이드 추출에 가장 최적의 용매를 50% 에탄올로 하고, 영향이 다소 작았던 요인인 압력을 2,500 psi로 설정하였으며, 온도와 추출시간을 독립변수로 설정하였다. 추출 온도 및 시간을 독립변수로 하여 고온고압 처리한 홍삼의 진세노사이드 Rb1, Rg1 및 Rg3(20S) 함량의 합, 총 페놀성 화합물 및 벤조피렌 함량을 측정한 결과, 벤조피렌이 검출되지 않는 조건에서 진세노사이드 Rb1, Rg1 및 Rg3(20S)의 함량 합이 최적화된 조건은 $158^{\circ}C$, 20분임을 확인할 수 있었다. 최적화된 조건에서의 가속 용매 추출 시 초음파 및 환류냉각 추출에 비해 적은 용매로 단시간 추출하면서 진세노사이드 Rb1, Rg1 및 Rg3(20S) 함량 합 및 총폴리페놀 함량이 각각 1.5~2배 및 2.2~5배 높게 추출할 수 있어 효율적인 추출방법이 될 것으로 생각된다.

A new method based on accelerated solvent extraction (ASE) combined with response surface methodology (RSM) has been developed for optimization of the extraction of ginsenoside [Rb1, Rg1, and Rg3(20S)], total phenolics, and benzopyrene in red ginseng. The RSM method, based on a five level and two variable central composite design, was employed to obtain the optimal combination of extraction conditions. In brief, ginsenosides Rb1, Rg1, and Rg3(20S) and total phenolics with undetectable benzopyrene were optimally extracted with 50% ethanol as an extraction solvent, extraction temperature of $158^{\circ}C$, extraction time of 20 min, extraction pressure of 2,500 psi, flush volume of 60%, and one extraction cycle. The contents of ginsenosides and total phenolics in red ginseng extracted by ASE under optimum conditions were significantly higher than those extracted by sonication and reflux extraction.

키워드

참고문헌

  1. Box GEP, Wilson KB. 1951. On the experimental attainment of optimum conditions. J Roy Statist Soc 13: 1-45.
  2. Park KJ, Lim JH, Kim BK, Jeong JW, Kim JC, Lee MH, Cho YS, Jung H. 2009. Optimization of extraction conditions to obtain functional components from buckwheat (Fagopyrum esculentum M.) sprouts, using response surface methodology. Korean J Food Preserv 16: 734-741.
  3. Yoon CH, Bok HS, Choi DK, Row KH. 2012. Optimization condition of astaxanthin extract from shrimp waste using response surface methodology. Korean Chem Eng Res 50: 545-550. https://doi.org/10.9713/kcer.2012.50.3.545
  4. Kim DY, Teng H, Choi YH. 2012. Optimization of ultrasonic-assisted extraction process for Inonotus obliquus using response surface methodology. Curr Res Agric Life Sci 30: 68-75.
  5. Lee HS, Lee HJ, Yu HJ, Ju DW, Kim Y, Kim CT, Kim CJ, Cho YJ, Kim N, Choi SY, Suh HJ. 2011. A comparison between high hydrostatic pressure extraction and heat extraction of ginsenosides from ginseng (Panax ginseng CA Meyer). J Sci Food Agric 91: 1466-1473. https://doi.org/10.1002/jsfa.4334
  6. Csiktusnadi Kiss GA, Forgacs E, Cserhati T, Mota T, Morais H, Ramos A. 2000. Optimisation of the microwave-assisted extraction of pigments from paprika (Capsicum annuum L.) powders. J Chromatogr A 889: 41-49. https://doi.org/10.1016/S0021-9673(00)00440-4
  7. Teng H, Lee WY, Choi YH. 2013. Optimization of microwave-assisted extraction for anthocyanins, polyphenols, and antioxidants from raspberry (Rubus coreanus Miq.) using response surface methodology. J Sep Sci 36: 3107-3114.
  8. Kown JH, Belanger JM, Pare JR. 2003. Optimization of microwave- assisted extraction (MAP) for ginseng components by response surface methodology. J Agric Food Chem 51: 1807-1810. https://doi.org/10.1021/jf026068a
  9. Gao F, Hu Y, Ye X, Li J, Chen Z, Fan G. 2013. Optimal extraction and fingerprint analysis of Cnidii fructus by accelerated solvent extraction and high performance liquid chromatographic analysis with photodiode array and mass spectrometry detections. Food Chem 141: 1962-1971. https://doi.org/10.1016/j.foodchem.2013.05.013
  10. Zhao LC, He Y, Deng X, Yang GL, Li W, Liang J, Tang QL. 2012. Response surface modeling and optimization of accelerated solvent extraction of four lignans from Fructus Schisandrae. Molecules 17: 3618-3629. https://doi.org/10.3390/molecules17043618
  11. Cha KH, Lee HJ, Koo SY, Song DG, Lee DU, Pan CH. 2010. Optimization of pressurized liquid extraction of carotenoids and chlorophylls from Chlorella vulgaris. J Agric Food Chem 58: 793-797. https://doi.org/10.1021/jf902628j
  12. Woo KS, Jang KI, Kim KY, Lee HB, Jeong HS. 2006. Antioxidative activity of heat treated licorice (Glycyrrhiza uralensis Fisch) extracts. Korean J Food Sci Technol 38: 355-360.
  13. Kwon OC, Woo KS, Kim TM, Kim DJ, Hong JT, Jeong HS. 2006. Physicochemical characteristics of garlic (Allium sativum L.) on the high temperature and pressure treatment. Korean J Food Sci Technol 38: 331-336.
  14. Hwang IG, Woo KS, Kim TM, Kim DJ, Yang MH, Jeong HS. 2006. Change of physicochemical characteristics of Korean pear (Pyrus pyrifolia Nakai) juice with heat treatment conditions. Korean J Food Sci Technol 38: 342-347.
  15. Choi Y, Lee SM, Chun J, Lee HB, Lee J. 2006. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem 99: 381-387. https://doi.org/10.1016/j.foodchem.2005.08.004
  16. Dewanto V, Wu X, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50: 4959-4964. https://doi.org/10.1021/jf0255937
  17. Jeong SM, Kim SY, Kim DR, Jo SC, Nam KC, Ahn DU, Lee SC. 2004. Effect of heat treatment on the antioxidant activity of extracts from citrus peels. J Agric Food Chem 52: 3389-3393. https://doi.org/10.1021/jf049899k
  18. Yang SJ, Woo KS, Yoo JS, Kang TS, Noh YH, Lee J, Jeong HS. 2006. Change of Korean ginseng components with high temperature and pressure treatment. Korean J Food Sci Technol 38: 521-525.
  19. Jung KH, Hong HD, Cho CW, Lee MY, Choi UK, Kim YC. 2012. Phenolic acid composition and antioxidative activity of red ginseng prepared by high temperature and high pressure process. Korean J Food & Nutr 25: 827-832. https://doi.org/10.9799/ksfan.2012.25.4.827
  20. Park CK, Jeon BS, Yang JW. 2003. The chemical components of Korean ginseng. Food Industry and Nutrition 8(2): 10-23.
  21. Nam KY. 2005. The comparative understanding between red ginseng and white ginsengs processed ginsengs (Panax ginseng C.A. Meyer). J Ginseng Res 29: 1-18. https://doi.org/10.5142/JGR.2005.29.1.001
  22. Shoji J. 1999. Studies on the constituents of ginseng. Nat Med 53: 55-59.
  23. Choi JE, Nam KY, Li X, Kim BY, Cho HS, Hwang KB. 2010. Changes of chemical compositions and ginsenoside contents of different root parts of ginsengs with processing method. Korean J Med Crop Sci 18: 118-125.
  24. Kim JS, Kim KW, Choi KJ, Kwak YK, Im KS, Lee KH, Chung HY. 1996. Screening of antioxidative components from red ginseng saponin. Korean J Ginseng Sci 20: 173-178.
  25. Kim MJ, Jung NP. 1987. The effect of ginseng saponin on the mouse immune system. Korean J Ginseng Sci 11: 130-135.
  26. Ha TY, Lee JH, Han JH. 1987. Inhibitory effects of Panax ginseng on tumorigenesis in mice. J Cheonbuk Medical Sci 11: 1-11.
  27. Park JH. 2004. Sun ginseng-A new processed ginseng with fortified activity. Food Industry and Nutrition 9(1): 23-27.
  28. Park IH, Kim NY, Han SB, Kim JM, Kwon SW, Kim HJ, Park MK, Park JH. 2002. Three new dammarane glycosides from heat processed ginseng. Arch Phrm Res 25: 428-432. https://doi.org/10.1007/BF02976595
  29. Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  30. Hu S, Jin S, Choi D. 2008. Analysis of benzo(a)pyrene in red ginseng beverage. J Fd Hyg Safety 23: 26-30.
  31. Kim EO, Cha KH, Lee EH, Kim SM, Choi SW, Pan CH, Um BH. 2014. Bioavailability of ginsenosides from white and red ginsengs in the simulated digestion model. J Agric Food Chem 62: 10055-10063. https://doi.org/10.1021/jf500477n
  32. Kong H, Wang M, Venema K, Maathuis A, van der Heijden R, van der Greef J, Xu G, Hankemeier T. 2009. Bioconversion of red ginseng saponins in the gastro-intestinal tract in vitro model studied by high-performance liquid chromatography-high resolution Fourier transform ion cyclotron resonance mass spectrometry. J Chromatogr A 1216: 2195-2203. https://doi.org/10.1016/j.chroma.2008.11.030
  33. Nho JW. 2010. Effect of temperature and solvent on ginseng (Panax ginseng C.A. Meyer) saponin profiling during high temperature and pressure processing. MS Thesis. Chungbuk National University, Cheongju, Korea.
  34. Simko P. 2002. Determination of polycyclic aromatic hydrocarbons in smoked meat products and flavouring food additives. J Chromatogr B Analyt Technol Biomed Life Sci 770: 3-18. https://doi.org/10.1016/S0378-4347(01)00438-8
  35. Yoon SR, Lee MH, Park JH, Lee IS, Kwon JH, Lee GD. 2005. Changes in physicochemical compounds with heating treatment of ginseng. J Korean Soc Food Sci Nutr 34: 1572-1578. https://doi.org/10.3746/jkfn.2005.34.10.1572
  36. Dewanto V, Wu X, Adom KK, Liu RH. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50: 3010-3014. https://doi.org/10.1021/jf0115589

피인용 문헌

  1. Aeration 공정 처리가 홍삼분말 추출물의 프로사포게닌의 함량 변화와 항산화 활성에 미치는 영향 vol.51, pp.6, 2019, https://doi.org/10.9721/kjfst.2019.51.6.576
  2. Antioxidant Effects of Raw Ginseng, Soft Red Ginseng, and Red Ginseng Sap vol.30, pp.9, 2016, https://doi.org/10.5352/jls.2020.30.9.763