DOI QR코드

DOI QR Code

전해수 생성온도에 따른 그람양성균과 그람음성균의 살균 효과

Bactericidal Effect of Electrolyzed Activated Water Prepared at Different Water Temperatures on Gram-Positive and Gram-Negative Bacteria

  • 이정민 (영남대학교 식품영양학과) ;
  • 정현정 (인하대학교 식품영양학과) ;
  • 방우석 (영남대학교 식품영양학과)
  • 투고 : 2016.05.09
  • 심사 : 2016.06.02
  • 발행 : 2016.08.31

초록

본 연구에서는 다양한 온도의 물로 제조한 전해수를 이용하여 그람양성균과 그람음성균에 대한 살균력을 확인하였다. 전해수의 물성은 물의 온도가 높아질수록 pH와 유효 잔류염소 농도 값이 높아졌으나, 산화환원전위 값은 감소하였다. 4, 22, $40^{\circ}C$의 물을 이용하여 생성한 전해수에 Escherichia coli O157:H7을 15분 동안 처리하였을 때 각각 1.18, 4.47, 5.46 log CFU/mL 감소하였으며, Staphylococcus aureus는 각각 0.72, 4.90, 5.54 log CFU/mL 감소하였다. 이를 통해 전해수를 생성하는 물의 온도가 증가할수록 살균 효과가 높아지는 것을 알 수 있다. 4, $40^{\circ}C$의 물을 이용하여 생성한 전해수에 균주를 처리한 경우, Listeria monocytogenes의 D 값(일정한 온도에서 90 %의 미생물이 사멸하는 데 걸리는 시간)이 각각 6.60, 1.57분으로 나타나 가장 낮았으며, $22^{\circ}C$ 전해수에서는 Salmonella Enteritidis의 D 값이 2.92분으로 가장 낮은 값을 나타내었다. 그람양성균과 그람음성균을 비교하였을 때 모든 온도에서 D 값에 대한 유의적인 차이는 나타나지 않았다(P>0.05). 본 연구 결과는 전해수를 제조할 경우 높은 온도의 물을 이용하여 제조하는 것이 미생물 살균 효과가 높다는 것을 보여주고 있다. 따라서 전해수를 생성할 때 물의 온도를 고려하여 높은 살균력을 나타내는 전해수를 생성할 수 있으며, 이는 물의 온도 외에도 물의 경도나 물의 종류 등을 고려하여 최적의 살균 전해수를 제조함으로써 식품산업에 적용하기 위한 자료로 활용될 것으로 기대된다.

Electrolyzed activated water (EAW) has been reported to exhibit strong bactericidal effects on foodborne microorganisms. However, the disinfection efficacy of EAW is affected by factors such as water source and hardness. This study investigated bactericidal effects of EAW against three gram-positive (Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus) and three gram-negative (Cronobacter sakazakii, Escherichia coli O157:H7, and Salmonella Enteritidis) foodborne pathogens. Six strains were treated with EAW prepared at different water temperatures (4, 22, and $40^{\circ}C$) for 15 min, and D-values were generated. The results show that the lowest D-values for Lis. monocytogenes by EAW produced at $4^{\circ}C$ and $40^{\circ}C$ were 6.60 and 1.57 min, respectively. The lowest D-value for Sal. Enteritidis by EAW produced at $22^{\circ}C$ was 2.92 min. D-values of all strains treated by EAW produced at $40^{\circ}C$ decreased significantly compared to those treated by EAW produced at $4^{\circ}C$ (P<0.05). These results demonstrate that applying EAW produced at warm temperature is more effective for reducing foodborne pathogens for food safety.

키워드

참고문헌

  1. Choi JH. 2013. Commercialization strategies for export markets of fresh-cut baby leaf vegetables. Food Science and Industry 46(4): 23-29.
  2. Oh TY, Kim HJ. 2013. Microbiological safety of fresh-cut vegetables and salads. Safe Food 8: 18-27.
  3. Shin JK, Kim BR, Kim AJ. 2010. Nonthermal food processing technology using electric power. Food Science and Industry 43(1): 21-34.
  4. Hricova D, Stephan R, Zweifel C. 2008. Electrolyzed water and its application in the food industry. J Food Prot 71: 1934-1947. https://doi.org/10.4315/0362-028X-71.9.1934
  5. Kang KS, Kim TI, Lee HI. 2010. Investigation on the technology trend in electrolyzed sterilizing water. Functional Waters 1: 1-7.
  6. Demirci A, Ngadi MO. 2012. Microbial decontamination in the food industry: novel methods and applications. Woodhead Publishing, Cambridge, UK. p 563-591.
  7. Hao J, Liu H, Liu R, Dalai W, Zhao R, Chen T, Li L. 2011. Efficacy of slightly acidic electrolyzed water (SAEW) for reducing microbial contamination on fresh-cut cilantro. J Food Saf 31: 28-34. https://doi.org/10.1111/j.1745-4565.2010.00261.x
  8. Gunaydin M, Esen S, Karadag A, Unal N, Yanil K, Odagasi H, Birinci A. 2014. In vitro antimicrobial activity of $Medilox^{(R)}$ super-oxidized water. Ann Clin Microbiol Antimicrob 13: 29. https://doi.org/10.1186/1476-0711-13-29
  9. Koide S, Shitanda D, Note M, Cao W. 2011. Effects of mildly heated, slightly acidic electrolyzed water on the disinfection and physicochemical properties of sliced carrot. Food Control 22: 452-456. https://doi.org/10.1016/j.foodcont.2010.09.025
  10. Park H, Hung YC, Brackett RE. 2002. Antimicrobial effect of electrolyzed water for inactivating Campylobacter jejuni during poultry washing. Int J Food Microbiol 72: 77-83. https://doi.org/10.1016/S0168-1605(01)00622-5
  11. Liao LB, Chen WM, Xiao XM. 2007. The generation and inactivation mechanism of oxidation-reduction potential of electrolyzed oxidizing water. J Food Eng 78: 1326-1332. https://doi.org/10.1016/j.jfoodeng.2006.01.004
  12. Honda Y. 2003. Improvement of the electrolysis equipment and application of slightly acidic electrolyzed water for dairy farming. J Jpn Soc Agric Mach 65: 27-79.
  13. Koseki S, Yoshida Y, Isobe S, Itoh K. 2001. Decontamination of lettuce using acidic electrolyzed water. J Food Prot 64: 652-658. https://doi.org/10.4315/0362-028X-64.5.652
  14. Hsu SY. 2003. Effects of water flow rate, salt concentration and water temperature on efficiency of an electrolyzed oxidizing water generator. J Food Eng 60: 469-473. https://doi.org/10.1016/S0260-8774(03)00079-7
  15. Kim MH, Jeong JW, Cho YJ. 2004. Comparison of characteristics on electrolyzed water manufactured by various electrolytic factors. Korean J Food Sci Technol 36: 416-422.
  16. Forghani F, Park JH, Oh DH. 2015. Effect of water hardness on the production and microbicidal efficacy of slightly acidic electolyzed water. Food Microbiol 48: 28-34. https://doi.org/10.1016/j.fm.2014.11.020
  17. Guentzel JL, Liang Lam K, Callan MA, Emmons SA, Dunham VL. 2008. Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water. Food Microbiol 25: 36-41.
  18. James CN, Copeland RC, Lytle DA. 2004. Relationships between oxidant-reduction potential, oxidant, and pH in drinking water. https://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwiuquOI38nOAhUHsJQKHVHQBGgQFggrMAE&url=https%3A%2F%2Fcfpub.epa.gov%2Fsi%2Fsi_public_file_download.cfm%3Fp_down load_id%3D460980&usg=AFQjCNFp-SMXvgjULx-M_YIEHOCy40ruyA&bvm=bv.129759880,d.dGo (accessed Mar 2016).
  19. Jang JH, Park KJ. 2008. Concentration of hypochlorous acid and hypochlorite ion and bactericidal effect of electrolyzed water as influenced by pH. J Food Res Technol 21: 29-31.
  20. Lee JM. 2012. A study on generation of hypochlorous acid in the underground water with using electrolysis. MS Thesis. Korea University of Technology and Education, Chungnam, Korea.
  21. Delaquis PJ, Stewart S, Toivonen PMA, Molys AL. 1999. Effect of warm, chlorinated water on the microbial flora of shredded iceberg lettuce. Food Res Int 32: 7-14. https://doi.org/10.1016/S0963-9969(99)00058-7
  22. Tango CN, Mansur AR, Oh DH. 2015. Fumaric acid and slightly acidic electrolyzed water inactivate Gram positive and Gram negative foodborne pathogens. Microorganisms 3: 34-46. https://doi.org/10.3390/microorganisms3010034
  23. Ding T, Xuan XT, Li J, Chen SG, Liu DH, Ye XQ, Shi J, Xue SJ. 2016. Disinfection efficacy and mechanism of slightly acidic electrolyzed water on Staphylococcus aureus in pure culture. Food Control 60: 505-510. https://doi.org/10.1016/j.foodcont.2015.08.037
  24. Kim YK, Min BS, Min JK, Lee JK, Lee YB, Ryoo KK, Lee MY. 2004. Biological characteristics of anodic electrolyed water. Korean J Environ Biol 22: 265-272.
  25. Koseki S, Yoshida K, Isobe S, Itoh K. 2004. Efficacy of acidic electrolyzed water for microbial decontamination of cucumbers and strawberries. J Food Prot 67: 1247-1251. https://doi.org/10.4315/0362-028X-67.6.1247
  26. Marriott NG. 1994. Principles of food sanitation. 3rd ed. Chapman & Hall Inc., New York, NY, USA. p 114-132.
  27. Huang YR, Hung YC, Hsu SY, Huang YW, Hwang DF. 2008. Application of electrolyzed water in the food industry. Food Control 19: 329-345. https://doi.org/10.1016/j.foodcont.2007.08.012
  28. Zagory D. http://postharvest.tfrec.wsu.edu/pages/PC2000W (accessed Mar 2016).
  29. Do JS, Bang WS. 2013. Bactericidal effect of 461 nm blue light emitting diode on pathogenic bacteria. Korean J Food Preserv 20: 419-423. https://doi.org/10.11002/kjfp.2013.20.3.419
  30. Nan S, Yongyu LI, Baoming LI, Wang C, Cui X, Cao W. 2010. Effect of slightly acidic electrolyzed water for inactivating Escherichia coli O157:H7 and Staphylococcus aureus analyzed by transmission electron microscopy. J Food Prot 73: 2211-2216. https://doi.org/10.4315/0362-028X-73.12.2211
  31. Kim JJ, Lee MY. 2007. Bactericidal effects of anodic electrolyzed water on the selected Gram-negative and Grampositive bacteria. J Environ Sci 16: 1295-1300.
  32. Rahman SM, Ding T, Oh DH. 2010. Effectiveness of low concentration electrolyzed water to inactivate foodborne pathogens under different environmental conditions. Int J Food Microbiol 139: 147-153. https://doi.org/10.1016/j.ijfoodmicro.2010.03.020
  33. Burnett SL, Beuchat LR. 2000. Human pathogens associated with raw produce and unpasteurized juices, and difficulties in decontamination. J Ind Microbiol Biotech 25: 281-287. https://doi.org/10.1038/sj.jim.7000106