DOI QR코드

DOI QR Code

Atomic Layer Deposition of Al2O3 Thin Films Using Dimethyl Aluminum sec-Butoxide and H2O Molecules

  • Jang, Byeonghyeon (School of Materials Science and Engineering, Yeungnam University) ;
  • Kim, Soo-Hyun (School of Materials Science and Engineering, Yeungnam University)
  • Received : 2016.06.22
  • Accepted : 2016.07.08
  • Published : 2016.08.27

Abstract

Aluminum oxide ($Al_2O_3$) thin films were grown by atomic layer deposition (ALD) using a new Al metalorganic precursor, dimethyl aluminum sec-butoxide ($C_{12}H_{30}Al_2O_2$), and water vapor ($H_2O$) as the reactant at deposition temperatures ranging from 150 to $300^{\circ}C$. The ALD process showed typical self-limited film growth with precursor and reactant pulsing time at $250^{\circ}C$; the growth rate was 0.095 nm/cycle, with no incubation cycle. This is relatively lower and more controllable than the growth rate in the typical $ALD-Al_2O_3$ process, which uses trimethyl aluminum (TMA) and shows a growth rate of 0.11 nm/cycle. The as-deposited $ALD-Al_2O_3$ film was amorphous; X-ray diffraction and transmission electron microscopy confirmed that its amorphous state was maintained even after annealing at $1000^{\circ}C$. The refractive index of the $ALD-Al_2O_3$ films ranged from 1.45 to 1.67; these values were dependent on the deposition temperature. X-ray photoelectron spectroscopy showed that the $ALD-Al_2O_3$ films deposited at $250^{\circ}C$ were stoichiometric, with no carbon impurity. The step coverage of the $ALD-Al_2O_3$ film was perfect, at approximately 100%, at the dual trench structure, with an aspect ratio of approximately 6.3 (top opening size of 40 nm). With capacitance-voltage measurements of the $Al/ALD-Al_2O_3/p-Si$ structure, the dielectric constant of the $ALD-Al_2O_3$ films deposited at $250^{\circ}C$ was determined to be ~8.1, with a leakage current density on the order of $10^{-8}A/cm^2$ at 1 V.

Keywords

References

  1. L. Niinisto, J. Paivasaari, J. Niinisto, M. Putkonen and M. Nieminen, Phys. Status Solidi A, 201, 1443 (2004). https://doi.org/10.1002/pssa.200406798
  2. L. G. Gosset, J.-F. Damlencourt, O. Renault, D. Rouchon, Ph. Holliger, A. Ermolieff, I. Trimaille, J.-J. Ganem, F. Martin and M.-N. Semeria, J. Non-Cryst. Solids., 303, 17 (2002). https://doi.org/10.1016/S0022-3093(02)00958-4
  3. R. Katamreddy, R. Inman, G. Jursich, A. Soulet and C. Takoudis, J. Electrochem. Soc., 153, C701 (2006). https://doi.org/10.1149/1.2239258
  4. D. M. Hausmann and R. G. Gordon, J. Cryst. Growth, 249, 251 (2003). https://doi.org/10.1016/S0022-0248(02)02133-4
  5. A. Philip and K. Rajeev Kumar, Ph. D. Thesis, p101-128, Cochin University of Science and Technology India, (2012).
  6. M. D. Groner, J. W. Elam, F. H. Fabregutte and S. M. George, Thin Solid Films., 413, 186 (2002). https://doi.org/10.1016/S0040-6090(02)00438-8
  7. K. Kukli, M. Ritala and M. Leskela, J. Vac. Sci. Technol. A., 15, 2214 (1997).
  8. J. Koo, S. Kim, S. Jeon and H. Jeon, J. Korean Phys. Soc., 48, 131 (2006).
  9. M. D. Groner, J. W. Elam, F. H. Fabregutte and S. M. George, Chem. Mater., 16, 639 (2004). https://doi.org/10.1021/cm0304546
  10. J. L. Hemmen, S. B. S. Heil, J. H. Klootwijk, F. Roozeboom, C. J. Hodson, M. C. M. Snaden and W. M. M. Kessels, J. Electrochem. Soc., 154, G165 (2007). https://doi.org/10.1149/1.2737629
  11. F. Campabadal, J. M. Rafi, M. Zabala, O. Beldarrain, A. Faigon, H. Castan, A. Gomez, H. Garcia and S. Duenas, J. Vac. Sci. Technol. B, 29, 01AA07 (2011). https://doi.org/10.1116/1.3532544
  12. E. Gerritsen, N. Emonet, C. Caillat, N. Jourdan, M. Piazza, D. Fraboulet, B. Boeck, A. Berthelot, S. Smith and P. Mazoyer, Solid State Electron., 49, 1767 (2005). https://doi.org/10.1016/j.sse.2005.10.024
  13. L. Zhang, H. C. Jiang, C. Liu, J. W. Dong and P. Chow, J. Phys. D: Appl. Phys., 40, 3707 (2007). https://doi.org/10.1088/0022-3727/40/12/025
  14. V. Cimalla, M. Baeumler, L. Kirste, M. Prescher, B. Christian, T. Passow, F. Benkhelifa, F. Bernhardt, G. Eichapfel, M. Himmerlich, S. Krischok and J. Pezoldt, Mater. Sci. Appl., 5, 628 (2014).
  15. R. S. Johnson, G. Lucovsky and I. Baumvol, J. Vac. Sci. Technol. A, 19, 1353 (2001). https://doi.org/10.1116/1.1379316
  16. R. Katamreddy, R. Inman, G. Jursich, A. Soulet and C. Takoudis, Appl. Phys. Lett., 89, 262906 (2006). https://doi.org/10.1063/1.2425023
  17. B. C. O’Regan, S. Scully, A. C. Mayer, E. Palomares and J. Durrant, J. Phys. Chem. B, 109, 4616 (2005). https://doi.org/10.1021/jp0468049
  18. M. D. Groner, S. M. George, R. S. Mclean and P. F. Carcia, Appl. Phys. Lett., 88, 051907 (2006). https://doi.org/10.1063/1.2168489
  19. R. S. Nowicki, J. Vac. Sci. Technol., 14, 127 (1977). https://doi.org/10.1116/1.569103
  20. C.-S. Park. J.-G. Kim and J. S. Chun, J. Vac. Sci. Technol. A, 1, 1820 (1983). https://doi.org/10.1116/1.572221
  21. J.-P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso and D. Hole, Nanotechnology, 13, 465 (2002). https://doi.org/10.1088/0957-4484/13/4/305
  22. D. Hoffman and D. Leibowitz, J. Vac. Sci. Technol., 8, 107 (1971). https://doi.org/10.1116/1.1316256
  23. H. Kim, H.-B.-R. Lee and W.-J Maeng, Thin Solid Films, 517, 2563 (2009). https://doi.org/10.1016/j.tsf.2008.09.007
  24. A. W. Ott, J. W. Klaus, J. M. Johnson and S. M. George, Thin Solid Films, 292, 135 (1997). https://doi.org/10.1016/S0040-6090(96)08934-1
  25. M. Ritala, H. Saloniemi, M. Leskelä, T. Prohaska, G. Friedbacher and M. Grasserbauer, Thin Solid Films, 286, 54 (1996). https://doi.org/10.1016/S0040-6090(95)08524-6
  26. L. Hiltunen, H. Kattelus, M. Leskela, M. Makela, L. Niinisto, E. Nykanen, P. Soininen and M. Tiitta, Mater. Chem. Phys., 28, 379 (1991). https://doi.org/10.1016/0254-0584(91)90073-4
  27. M. Ritala, M. Leskela, J.-P. Dekker, C. Mutsaers, P. J. Soininen and J. Skarp, Chem. Vap. Deposition, 5, 7 (1999). https://doi.org/10.1002/(SICI)1521-3862(199901)5:1<7::AID-CVDE7>3.0.CO;2-J
  28. V. E. Drozd, A. P. Baraban and I. O. Nikiforova, Appl. Surf. Sci., 82/83, 583 (1994). https://doi.org/10.1016/0169-4332(94)90279-8
  29. E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug and M. A. Gribelyuk, Appl. Phys. Lett., 76, 176 (2000). https://doi.org/10.1063/1.125694
  30. R. Matero, A. Rahtu, M. Ritala, M. Leskelä and T. Sajavaara, Thin Solid Films, 368, 1 (2000). https://doi.org/10.1016/S0040-6090(00)00890-7
  31. A. W. Ott, K. C. McCarley, J. W. Klaus, J. D. Way and S. M. George, Appl. Surf. Sci., 107, 128 (1996). https://doi.org/10.1016/S0169-4332(96)00503-X
  32. G. S. Higashi and C. G. Fleming, Appl. Phys. Lett., 55, 1963 (1989). https://doi.org/10.1063/1.102337
  33. S. M. George, A. W. Ott and J. W. Klaus, J. Phys. Chem., 100, 13121 (1996). https://doi.org/10.1021/jp9536763
  34. T. Cheon, S.-H. Choi, S.-H. Kim and D.-H. Kang, Electrochem. Solid-State Lett., 14, D57 (2011). https://doi.org/10.1149/1.3556980
  35. T. Aoyama, S. Saida, Y. Okayama, M. Fujisaki, K. Imai and T. Arikade, J. Electrochem. Soc., 143, 977 (1996). https://doi.org/10.1149/1.1836568
  36. P. Ericsson, S. Bengtsson and J. Skarp, Microelectron. Eng., 36, 91 (1997). https://doi.org/10.1016/S0167-9317(97)00022-1
  37. J. A. Aboaf, J. Electrochem. Soc., 114, 948 (1967). https://doi.org/10.1149/1.2426787
  38. S. Yun, K. Lee, J. Skarp, H. Kim and K. Nam, J. Vac. Sci. Technol. A, 12, 2993 (1997).
  39. N. D. Hoivik, J. W. Elam, R. J. Linderman, V. M. Bright, S. M. George and Y. C. Lee, Sens. Actuators A Phys., 103, 100 (2003). https://doi.org/10.1016/S0924-4247(02)00319-9
  40. O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Kosoinen, S.-P. Hannula and R. L. Puurunen, Thin Solid Films, 552, 124 (2014). https://doi.org/10.1016/j.tsf.2013.11.112
  41. S. Kim, S. Lee, C, Hwang, Y. Min, J. Won and J. Jeong, J. Electrochem. Soc., 153, F69 (2006). https://doi.org/10.1149/1.2177047
  42. S. K. Pradhan, P. J. Reucroft and Y. Ko, Surf. Coat. Technol., 176, 382 (2004). https://doi.org/10.1016/S0257-8972(03)00750-3
  43. P. katiyar, C. Jin and R. J. Narayan, Acta Mater., 53, 2617 (2005). https://doi.org/10.1016/j.actamat.2005.02.027
  44. S. Jakschik, U. Schroeder, T. Hecht, M. Gutsche, H. Seidl and J. W. Bartha, Thin Solid Films, 425, 216 (2003). https://doi.org/10.1016/S0040-6090(02)01262-2