DOI QR코드

DOI QR Code

A Study on Rotation Behavior of High Strength Steel Endplate Connections under Fire

화재시 고강도강 엔드플레이트 접합부의 회전 거동에 관한 연구

  • Received : 2016.03.30
  • Accepted : 2016.05.26
  • Published : 2016.09.01

Abstract

In order to understand rotation behavior of high strength steel endplate connections under fire, this study is compared with existing studies conducted using FEA program. Eurocode 3 presents the three failure modes according to the prediction of bending resistance moment. The parameters of analysis model are temperature, thickness and steel materials of endplate. The rotation stiffness, and bending resistance moment are analyzed according to the parameters. The change of rotation stiffness and bending resistance moment are analyzed about the parameters, regression equations are suggested the change of high strength steel endplate connections. Consequently, the regression equations were proposed as the linear and quadratic equation. The moment ratio of high strength steel under fire was more reduced than the carbon steel, and was small effect about the thickness. When the high strength steel under fire was compared with at ambient temperature, the slope of initial rotation stiffness reduced, the increment ratio of moment was slow, and the change of plastic rotation stiffness wasn't effect by the thickness increase.

본 연구에서는 고온시 고강도강재를 사용한 엔드플레이트 접합부의 회전 거동 변화를 파악하기 위해 유한요소 해석프로그램을 이용하여 모델링하고 기존 연구를 대상으로 비교분석한다. Eurocode 3에서는 휨 저항모멘트에 대한 예측식이 주어지고, 이를 통해 3가지 파괴모드를 파악한다. 해석 모델은 온도, 엔드플레이트 두께 및 강재를 변수로 하여 이에 따른 초기회전강성, 소성회전강성 및 휨 저항모멘트 등을 분석한다. 회전강성 및 휨 저항모멘트는 엔드플레이트의 두께 및 재료에 따른 변화를 온도 별로 분석하고 회귀식을 제시하여 고강도강재를 사용한 접합부의 변화를 비교하고자 한다. 그 결과 초기회전강성은 1차식, 소성회전강성 및 휨 저항모멘트는 2차식으로 회귀식을 제시하였다. 고온시 고강도강재는 일반강재에 비해 휨 저항모멘트비는 감소하였고 두께에 대한 영향이 더 작았다. 고온시 고강도강재를 적용하였을 때 상온시에 비해 초기회전강성 기울기는 감소하였고 휨 저항모멘트의 증가율은 완만하게 나타났으며, 소성회전강성 변화는 영향을 미치지 않았다.

Keywords

References

  1. Eurocode 3. (2005), Design of Steel Structures, Part 1-2: General Rules-Structural Fire Design.
  2. Eurocode 3. (2005), Design of Steel Structures, Part 1-8: Design of Joints.
  3. Hanus, F., Zilli, G., and Franssen, J. M. (2011), Behaviour of Grade 8.8 Bolts Under Natural Fire Conditions - Tests and Model, Journal of Constructional Steel Research, 67(8), 1292-1298. https://doi.org/10.1016/j.jcsr.2011.03.012
  4. Kim, J. H. (2001), An Experimental Study on the Structural Behavior in Friction Type Bolted Joints Clamping by F13T Grade High Strength Bolts, Journal of Architectural Institute of Korea (Structure), 17(12), 53-60.
  5. Oh, S. H., and Park, H. Y. (2014), A Study on Deformation Capacity of High Strength Steel Beam-to-Column Connections According to Welding Detail at Beam End, Journal of Korean Society of Steel Construction, 26(4), 335-348. https://doi.org/10.7781/kjoss.2014.26.4.335
  6. Qiang, X., Bijlaard, FSK., Kolstein, H., and Jiang, X. (2014), Behaviour of Beam-to-column High Strength Steel Endplate Connections Under Fire Conditions - Part 1: Experimental, Engineering Structures, 64, 23-38. https://doi.org/10.1016/j.engstruct.2014.01.028
  7. Qiang, X., Bijlaard, F. S. K., Kolstein, H., and Jiang, X. (2014), Behaviour of Beam-to-column High Strength Steel Endplate Connections Under Fire Conditions - Part 2: Numerical study, Engineering Structures, 64, 39-51. https://doi.org/10.1016/j.engstruct.2014.01.034
  8. Richard, R. M., Hsia, W. K., and Chmielowiec, M. (1988), Derived Moment Rotation Curves for Double Framing Angles, Computers & Structures, 30(3), 485-494. https://doi.org/10.1016/0045-7949(88)90281-7