DOI QR코드

DOI QR Code

Properties of Non-Sintered Cement Pastes Immersed in Sea Waters at Different Temperatures for Binders Mixed with Different Ratios

침지된 해수 온도 및 결합재 혼합비에 따른 비소성 시멘트의 강도 특성

  • 전유빈 (울산과학기술원 도시환경공학부) ;
  • 김태완 (부산대학교 생산기술연구소)
  • Received : 2016.05.20
  • Accepted : 2016.07.29
  • Published : 2016.09.01

Abstract

This paper presents an investigation of the mechanical properties on non-sintered cement pastes immersed in sea waters at three different temperatures. The non-sintered cement pastes were synthesized using blended binder(Class F fly ash; FA and ground granulated blast furnace slag; GGBFS) and alkali activator(sodium hydroxide and sodium silicate). Binders were prepared by mixing the FA and GGBFS in different blend weight ratios of 6:4, 7:3 and 8:2. The alkali activators were used 5wt% of blended binder, respectively. Calcium carbonate was used as an chemical additive. The compressive strength, bulk density and absorption of alkali-activated FA-GGBFS blends pastes were measured at 3 and 28 days after immersed in sea waters at three different temperatures($5^{\circ}C$, $15^{\circ}C$ and $25^{\circ}C$). The XRD and SEM tests of the pastes were conducted at 28 days. Water-soluble chloride(free chloride) and acid-soluble chloride(total chloride) contents in the pastes were also measured after 28 days immersion in sea water. The experimental results showed that increasing the content of FA in alkali-activated FA-GGBFS blends pastes immersed in sea water increases the absorption, water-soluble chloride content and acid-soluble chloride content, and reduces the compressive strength and bulk density. And it was found that there was a variation of strength change for the alkali-activated FA-GGBFS blends pastes immersed in sea waters at three different temperatures that depends on the blending ratio of FA and GGBFS.

본 연구에서는 해수 침지 온도에 따른 비소성 시멘트 경화체의 물리적 및 역학적 특성에 대해 비교 분석하였다. 비소성 시멘트는 플라이애시와 고로슬래그미분말을 6:4, 7:3 및 8:2의 중량비로 혼합하여 수산화나트륨과 액상규산나트륨으로 알칼리 활성화 하여 제작되었다. 알칼리 활성화를 위한 활성화제는 플라이애시와 고로슬래그미분말을 혼합한 중량의 5%로 하였으며, 화학첨가제로 탄산칼슘이 사용되었다. 본 연구에서는 알칼리 활성화된 시험체들을 3가지 다른 온도($5^{\circ}C$, $15^{\circ}C$$25^{\circ}C$)의 해수에 각각 침지 시킨 후, 침지 재령 3일 및 28일에 대해 경화체의 압축 강도, 밀도 및 흡수율을 측정하였으며, 해수 침지 재령 28일에 대해서는 XRD 및 SEM 시험 분석을 실시하였다. 또한, 해수 침지 재령 28일에 대하여 시험체들 내의 수용성 염화물(자유염화물) 및 산-가용성 염화물(총염화물) 함유량을 측정하여 분석하였다. 본 연구에서 해수온도별로 침지시킨 플라이애시-고로슬래그미분말 혼합 알칼리 활성화 경화체는 플라이애시 혼합률이 증가함에 따라 밀도 감소, 흡수율 증가 및 강도가 감소하는 경향을 나타냈다. 또한 플라이애시 혼합률이 증가할수록 시험체 내의 수용성 염화물 및 산-가용성 염화물의 양이 증가하는 것으로 나타났다. 본 연구에서 제작된 플라이애시-고로슬래그미분말 혼합 알칼리 활성화 경화체는 노출된 해수 온도 영향으로 인한 강도 차이는 없는 것으로 판단되며, 플라이애시와 고로슬래그미분말의 혼합중량비에 따라 강도 특성이 달라지는 것으로 나타났다.

Keywords

References

  1. Alvarez-Ayuso, E., Querol, X., Plana, F., Alastuey, A., Moreno, N., Izquierdo, M., Font, O., Moreno, T., Diez, S., Vazquez, E., and Barra, M. (2008), Environmental, Physical and Structural Characterisation of Geopolymer Matrixes synthesised from Coal (Co-)Combustion Fly Ashes, Journal of Hazardous Materials, 15(1-3), 175-183.
  2. Bakharev, T. (2005), Geopolymeric Materials prepared using Class F Fly Ash and elevated Temperature Curing, Cement and Concrete Research, 35, 1224-1232. https://doi.org/10.1016/j.cemconres.2004.06.031
  3. Bernal, S. A., Mejia De Gutierrez, R., and Provis, J. L. (2012), Engineering and Durability Properties of Concretes based on Alkali-activated Granulated Blast Furnace Slag/Metakaolin Blends, Construction and Building Materials, 65, 51-59.
  4. Bondar, D., Lynsdale, C. J., Milestone, N. B., Hassani, N., and Ramezanianpour, A. A. (2011), Effect of Type, Form, and Dosage of Activators on Strength of Alkali-activated Natural Pozzolans, Cement and Concrete Composites, 33(2), 251-260. https://doi.org/10.1016/j.cemconcomp.2010.10.021
  5. Chindaprasirt, P., and Chalee, W. (2014), Effect of Sodium Hydroxide Concentration on Chloride Penetration and Steel Corrosion of Fly Ash-based Geopolymer Concrete under Marine Site, Construction and Building Materials, 63(30), 303-310. https://doi.org/10.1016/j.conbuildmat.2014.04.010
  6. Duxson, P., Fernandez-Jimenez, A., Provis, J. L., Lukey, G. C., Palomo, A., and Van Deventer, J. S. J. (2007), Geopolymer Technology: the Current State of the Art, Journal of Materials Science, 42, 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
  7. El-Didamony, H., Amer, A. A., and Ela-ziz, H. A. (2012), Properties and Durability of Alkali-activated Slag Pastes immersed in Sea Water, Ceramics International, 38, 3773-3780. https://doi.org/10.1016/j.ceramint.2012.01.024
  8. Fernandez-Jimenez, A., Garcia-Lodeiro, I., and Palomo, A. (2007) Durability of Alkali-activated Fly Ash Cementitious Materials, Journal of Materials Science, 42(9), 3055-3065. https://doi.org/10.1007/s10853-006-0584-8
  9. Ismail, I., Bernal, S. A., Provis, J. L., San Nicolas, R., Brice, D. G., Kilcullen, A. R., Hamdan, S., and Van Deventer, J. S. J. (2013), Influence of Fly Ash on the Water and Chloride Permeability of Alkali-activated Slag Mortars and Concretes, Construction and Building Materials, 48, 1187-1201. https://doi.org/10.1016/j.conbuildmat.2013.07.106
  10. Ismail, I., Bernal, S. A., Provis, J. L., San Nicolas, R., Hamdan, S., and Van Deventer, J. S. J. (2014), Modification of Phase Evolution in Alkali-activated Blast Furnace Slag by the Incorporation of Fly Ash, Cement and Concrete Composites, 45, 125-135. https://doi.org/10.1016/j.cemconcomp.2013.09.006
  11. Jun, Y., and Oh, J. E. (2015), Microstructure and Strength of Class F Fly Ash based Geopolymer containing Sodium Sulfate as an Additive, Journal of the Korea Concrete Institute, 27(4), 443-450. https://doi.org/10.4334/JKCI.2015.27.4.443
  12. Kawashima, S., Hou, P., Corr, D. J., and Shah, S. P. (2013), Modification of Cement-based Materials with Nanoparticles, Cement and Concrete Composites, 36, 8-15. https://doi.org/10.1016/j.cemconcomp.2012.06.012
  13. Kim, C. H., and Kim, N. W. (2014), Estimation on the Durability of Metakaolin Concrete according to the W/B Ratio, Journal of the Korea Institute for Structural Maintenance and Inspection, 18(4), 84-91. https://doi.org/10.11112/JKSMI.2014.18.4.084
  14. Kim, D. S., Yoo, J. K., Park, S. J., Won, C., and Kim, Y. J. (2005), Study of the Effect of Mineral Admixtures on the Chloride Diffusion of the Concrete immersed in Chloride Solution, Journal of the Korea Concrete Institute, 17(5), 679-686. https://doi.org/10.4334/JKCI.2005.17.5.679
  15. Kim, Y. C., Suk, J. Y., and Shin, D. C. (2006), An Experimental Study on the Salt Resistance Properties with Concrete Materials under Marine Environment(Exposure period: 5 years), Proceedings of the Korea Concrete Institute, 18(1), 169-172. https://doi.org/10.4334/JKCI.2006.18.2.169
  16. Komnitsas, K., Zaharaki, D., and Perdikatsis, V. (2007), Geopolymerisation of Low Calcium Ferronickel Slags, Journal of Materials Science, 42(9), 3073-3082. https://doi.org/10.1007/s10853-006-0529-2
  17. KS F 2714 (2012), Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete.
  18. KS F 2715 (2012), Standard Test Method for Water-Soluble Chloride in Mortar and Concrete.
  19. Lee, C. S., and Kim, M. W. (2013), Development of Maintenance Simulation System and Prediction of Chloride Ion Permeation for Marine Concrete Structures, Journal of the Korea Concrete Institute, 17(1), 64-75.
  20. Lee, C. S., Park, J. H., and Kim, Y. O. (2010), Service Life Prediction of R.C. Structures considering Chloride Binding, Journal of Korean Society of Hazard Mitigation, 10(1), 15-22.
  21. Liu, S., and Yan, P. (2010), Effect of Limestone Powder on Microstructure of Concrete, Journal of Wuhan University of Technology-Materials Science, 25(2), 328-331. https://doi.org/10.1007/s11595-010-2328-5
  22. Mohammed, T. U., Hamada, H., and Yamaji, T. (2004), Performance of Seawater-mixed Concrete in the Tidal Environment, Cement and Concrete Research, 34, 593-601. https://doi.org/10.1016/j.cemconres.2003.09.020
  23. Moon, H. Y., Lee, S. T., and Kim, H. S. (2001), Evaluation on the Deterioration and Resistance of Cement Matrix due to Seawater Attack, Journal of the Korea Concrete Institute, 13(2), 175-183. https://doi.org/10.22636/JKCI.2001.13.2.175
  24. Olivia, M. (2011), Durability related Properties of Low Calcium Fly Ash based Geopolymer Concrete, PhD Thesis, Curtin University, Australia.
  25. Olivia, M., and Nikraz, H. (2012) Properties of Fly Ash Geopolymer Concrete designed by Taguchi Method, Materials and Design, 36, 191-198. https://doi.org/10.1016/j.matdes.2011.10.036
  26. Park, S. J., Kim, J. H., and Hyung, W. G. (2015), Properties of Nonsintered Cement Mortar using Alkali and Sulfate mixed Stimulants according to Curing Method, Journal of the Korea Concrete Institute, 17(3), 236-243.
  27. Ravikumar, D., and Neithalath, N. (2013), Electrically induced Chloride Ion Transport in Alkali Activated Slag Concretes and the Influence of Microstructure, Cement and Concrete research, 47, 31-42. https://doi.org/10.1016/j.cemconres.2013.01.007
  28. Sato, T., and Beaudoin, J. J. (2011), Effect of Nano-$CaCO_3$ on Hydration of Cement containing Supplementary Cementitious Materials, Advances in Cement Research, 23(1), 33-43. https://doi.org/10.1680/adcr.9.00016
  29. Sato, T., and Diallo, F. (2010), Seeding Effect of Nano-$CaCO_3$ on the Hydration of Tricalcium Silicate, Journal of the Transportation Research Board, 2141, 61-67. https://doi.org/10.3141/2141-11
  30. Shaikh, F. U. A., and Supit, S. W. M. (2014), Mechanical and Durability Properties of High Volume Fly Ash(HVFA) Concrete containing Calcium Carbonate($CaCO_3$) Nanoparticles, Construction and Building Materials, 70, 309-321. https://doi.org/10.1016/j.conbuildmat.2014.07.099
  31. Shayan, A., Xu, A., Chirgwin, G., and Morris, H. (2010), Effects of Seawater on AAR Expansion of Concrete, Cement and Concrete Research, 40, 563-568. https://doi.org/10.1016/j.cemconres.2009.09.008
  32. Somna, K., Jatruapitakkul, C., Kajitvichyanukul, P., and Chindaprasirt, P. (2011), NaOH-activated Ground Fly Ash Geopolymer cured at Ambient Temperature, Fuel, 90(6), 2118-2124. https://doi.org/10.1016/j.fuel.2011.01.018
  33. Wild, J. B., and Sabir, B. B. (2003), Chloride Ingress and Strength Loss in Concrete with different PC-PFA-MK Binder Compositions exposed to synthetic Seawater, Cement and Concrete Research, 33, 353-362. https://doi.org/10.1016/S0008-8846(02)00961-4
  34. Yang, T., Yao, X., and Zhang, Z. (2014), Quantification of Chloride Diffusion in Fly Ash-Slag-based Geopolymers by X-ray Fluorescence (XRF), Construction and Building Materials, 69, 109-115. https://doi.org/10.1016/j.conbuildmat.2014.07.031
  35. Yoon, I. S. (2006), Integrated Modeling of Chloride Binding Isotherm of Concrete based on Physical and Chemical Mechanisms, Proceedings of the Korea Concrete Institute, 18(2), 537-540.
  36. Zhu, H., Zhang, Z., Zhu, Y., and Tain, L. (2014), Durability of Alkaliactivated Fly Ash Concrete: Chloride Penetration in Pastes and Mortars, Construction and Building Materials, 65, 51-59. https://doi.org/10.1016/j.conbuildmat.2014.04.110