DOI QR코드

DOI QR Code

Analytical Study on Behavior Characteristic of Shear Friction on Reinforced Concrete Shear Wall-Foundation Interface using High-Strength Reinforcing Bar

고강도 전단철근을 사용한 철근콘크리트 전단벽체-기초계면에서의 전단마찰 거동특성에 대한 해석적 연구

  • Cheon, Ju-Hyun (Construction and Environmental Lab., SungKyunKwan University) ;
  • Lee, Ki-Ho (Dept. of Civil, Samsung C&T Corporation) ;
  • Baek, Jang-Woon (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Park, Hong-Gun (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Shin, Hyun-Mock (Dept. of Civil and Architecture Engineering, SungKyunKwan University)
  • Received : 2016.03.31
  • Accepted : 2016.07.06
  • Published : 2016.08.31

Abstract

The purpose of this study is to provide analytical method to reasonably evaluate the complicated failure behaviors of shear friction of reinforced concrete shear wall specimens using grade 500 MPa high-strength bars. A total of 16 test specimens with a variety of variables such as aspect ratio, friction coefficient of interface in construction joint, reinforcement details, reinforcement ratio in each direction, material properties were selected and the analysis was performed by using a non-linear finite element analysis program (RCAHEST) applying the modified shear friction constitutive equation in interface based on the concrete design code (KCI, 2012) and CEB-FIP Model code 2010. The mean and coefficient of variation for maximum load from the experiment and analysis results was predicted 1.04 and 17% respectively and properly evaluated failure mode and overall behavior characteristic until failure occur. Based on the results, the analysis program that was applied modified shear friction constitutive equation is judged as having a relatively high reliability for the analysis results.

본 연구에서는 550 MPa급 고강도 철근을 사용한 낮은 형상비를 갖는 철근콘크리트 전단벽체의 벽체-기초 접합부에서의 전단마찰 파괴거동을 평가하기 위한 해석적 방안을 마련하는 것을 목표로 한다. 형상비, 경계면에서의 마찰계수, 배근상세, 각 방향으로의 철근비, 재료물성 등의 다양한 변수를 갖는 총 16개의 실험체를 검증 대상으로 선정하여 저자 등에 의해 개발된 비선형 유한요소해석 프로그램(RCAHEST)에 콘크리트 구조설계기준(2012)과 CEB-FIP Model code 2010을 바탕으로 경계면에서 수정된 전단마찰 구성관계식을 적용하여 해석을 수행하였다. 최대 하중에 대한 실험과 해석으로부터의 결과는 평균과 변동계수가 각각 1.04와 17% 정도로 예측하였고 일부 실험체를 제외하고 파괴모드와 파괴시까지의 전반적인 거동 특성을 적절히 평가하였다. 결과를 종합해 볼 때, 수정된 전단마찰 구성관계식을 적용한 해석프로그램은 해석 결과에 비교적 높은 신뢰도를 확보하고 있는 것으로 판단된다.

Keywords

References

  1. Park, H. G., Baek, J. W., Lee, J. H., and Shin, H. M., "Cyclic Loading Test for Shear Strength of Low-rise Reinforced Concrete Walls With Grade 550 MPa Bars", ACI Structural Journal, Vol.112, No.3, 2015, pp.299-310.
  2. Cheon, J. H., Seong, D. J., Cho, H. J., Cho, J. Y., and Shin, H. M., "Nonlinear Finite Element Analysis of the Reinforced Concrete Panel using High-Strength Reinforcing Bar", Journal of the Korea Concrete Institute, Vol.27, No.5, 2015, pp. 481-488. https://doi.org/10.4334/JKCI.2015.27.5.481
  3. Baek, J. W., and Park, H. G., "Shear-Friction Strength of RC Walls With Grade 550 MPa Bars", Proceedings of the Tenth Pacific Conference on Earthquake Building an Earthquake-Resilient Pacific, Sydney, Australia, 2015, pp.180-188.
  4. Birkeland, P. W., and Birkeland, H. W., "Connections in Precast Concrete Constructions", ACI Structural Journal, Vol.63, No.3, 1966, pp.345-368.
  5. Korea Concrete Institute, Concrete Structure Design Code and Commentary, Kimoondang, 2012.
  6. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary, American Concrete Institute, Farmington Hills, 2014, p.520.
  7. ACI Committee 349, Code Requirements for Nuclear Safety-Related Concrete Structures (ACI 349-13) and Commentary, American Concrete Institute, Farmington Hills, 2014, p. 200.
  8. Tassios, T. P., and Vintzeleou, E. N., "Concrete to Concrete Friction", Journal of Structural Engineering, ASCE, Vol.113, No.4, 1987, pp.832-849. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:4(832)
  9. Migeum, C., Kim, Y. J., Yun, G. J., Thomas, G. H., and Shirley, D., "Cyclic Shear-Friction Constitutive Model for Finite Element Analysis of Reinforced Concrete Membrane Elements", ACI Structural Journal, Vol.108, No.3, 2011, pp.324-331.
  10. Song, J. G., Choi, J. Y., and Kim, J. H., "The Shear Friction Mode of Slab-Column Connections", Journal of the Korea Concrete Institute, Vol.16, No.2, 2004, pp.79-82. https://doi.org/10.4334/JKCI.2004.16.1.079
  11. Loov, R. E., "Review of A23.3-94 simplified method of shear design and comparison with results using shear friction", Canadian Journal of civil Engineering, Vol.25, No.3, 1998, pp.437-450. https://doi.org/10.1139/l97-101
  12. Seong, D. J., Kim, T. H., Oh, M. S., and Shin, H. M., "Inelastic Performance of High-Strength Concrete Bridge Columns under Earthquake Loads", Journal of Advanced Concrete Technology, Vol.9, No.2, 2011, pp.205-220. https://doi.org/10.3151/jact.9.205
  13. Cheon, J. H., Kim, T. H., Lee, B. J., Lee, J. H., and Shin, H. M., "Inelastic Behavior and Ductility Capacity of Circular Hollow Reinforced Concrete Bridge Piers under Earthquake", Magazine of Concrete Research, Vol.64, No.10, 2012, pp. 919-930. https://doi.org/10.1680/macr.11.00131
  14. Comite Euro-International du Beton, CEB-FIP Model Code 2010, Thomas Telford, London, 2013, pp.176-183.
  15. Li, B., Maekawa, K., and Okamura, H., "Contact Density Model for Stress Transfer across Cracks in Concrete", Journal of the Faculty of Engineering, Vol.40, No.1, 1989, pp.9-52.
  16. Randl, N., "Design recommendations for interface shear transfer in fib Model Code 2010", The Fib Model Code for Concrete Structures 2010, Vol.14, No.3, 2013, pp.230-241.