DOI QR코드

DOI QR Code

Composite Oxidizing Agents Generation Using Electrolysis of Dilute Hydrochloric Acid

묽은 산 전기분해에 의한 복합 산화제 생성

  • Received : 2016.03.29
  • Accepted : 2016.04.27
  • Published : 2016.06.30

Abstract

Disinfection by electrolysis would be useful for small wastewater treatment plant, combined sewer overflow, ballast water, swimming pool, and fish farming, where the transport, storage, and the use of chlorine gas is limited. This study investigated the feasibility of the electrolysis of dilute hydrochloric acid (HCl) for disinfection. The effects of HCl concentration, voltage and reaction time on the generation of oxidizing agents, HOCl, $O_3$, and $H_2O_2$, were examined in a series of batch test. The highest current efficiency was 99.3% which was found at 2.2%, 3 V, and 5 min of HCl concentration, voltage, and reaction time, respectively. Continuous electrolysis at 2.2% HCl, 3 V, and 5 min of the hydraulic retention time showed 97.4% of the current efficiency. Addition of sodium chloride up to 20 g/L linearly increased the oxidizing agents production. 92.2% of total coliforms were removed by the contact with the electrolyzed water.

전기분해에 의한 소독은 소규모 하수처리장, 강우월류수, 선박평형수, 수영장, 양식장 등 염소의 운송, 보관, 사용에 어려움이 있는 곳에 활용될 가능성이 높다. 본 연구에서는 전압(2-5 V), 반응시간(1-10 min), 전해질농도(HCl 0.4-2.2% (w/v), NaCl 5-20 g/L)가 전기분해 산화제(HOCl, $O_3$, $H_2O_2$) 생성 효율에 미치는 영향을 고찰하였다. 회분식 실험 시 투입 전자 대비산화제 전환율(전류 효율)이 가장 높은 최적 조건은 HCl 2.2%, 3 V, 반응 시간 5분이었으며, 이 때의 전류 효율은 99.3%였다. HCl 2.2%, 3 V에서 수행한 연속식 전기분해실험에서는 전류 효율이 97.4% 이상이었으며, NaCl 농도(0-20 g/L) 증가에 따라 주요 산화제인 HOCl의 농도가 비례하여 증가하여 최대 99.8%의 결과를 보였다. 연속식 실험에서 얻은 전기분해수를 이용한 살균실험 결과 5분 안에 92.2% 이상의 총대장균군이 제거되어, 전기분해가 병원성 미생물 소독에 유효하게 사용될 수 있을 것으로 확인되었다.

Keywords

References

  1. Metcalf & Eddy., Wastewater engineering : Treatment and reuse I, 4th ed, McGraw-Hill, USA pp. 784-857(2004).
  2. Joyce, E., Mason, T. J., Phull, S. S. and Lorimer., J. P., "The development and evaluation of electrolysis in conjunction with power ultrasound for the disinfection of bacterial suspensions," Ultrason. Sonochem., 10, 231-234(2003). https://doi.org/10.1016/S1350-4177(03)00109-3
  3. Kasai, H. and Yoshimizu., M., "Disinfection of seawater from fishing port by an electrolytic apparatus and its application to fisheries sanitation," Nippon Suisan Gakkaishi (Japan Ed.), 69, 955-959(2003). https://doi.org/10.2331/suisan.69.955
  4. Kasai, H., Kawana, K., Labaiden, M., Namba, K. and Yoshimizu, M., "Elimination of Escherichia coli from oysters using electrolyzed seawater," Aquaculture, 319, 315-318(2011). https://doi.org/10.1016/j.aquaculture.2011.07.025
  5. Jung, Y., Yoon, Y., Hong, E., Kwon, M. and Kang, J. W., "Inactivation characteristics of ozone and electrolysis process for ballast water treatment using B. subtilis spores as a probe," Mar. Pollut. Bullet., 72(1), 71-79(2013). https://doi.org/10.1016/j.marpolbul.2013.04.028
  6. Hsu, S-Y., "Effects of flow rate, temperature and salt concentration on chemical and physical properties of electrolyzed oxidizing water," J. Food Eng., 66, 171-176(2005). https://doi.org/10.1016/j.jfoodeng.2004.03.003
  7. APHA, AWWA, and WEF, "Standard methods for the examination of water and wastewater," 20th ed., Washington, D.C., USA(1998).
  8. Sellers, R. M., "Spectrophotometric determination of hydrogen peroxide using potassium titanium (IV) oxalate," Analyst, 105, 950-954(1980). https://doi.org/10.1039/an9800500950
  9. Hsu, G.S-W., Hsia, C-W. and Hsu, S-Y., "Effects of electrode settings on chlorine generation efficiency of electrolyzing seawater," J. Food Drug Anal., 23(4), 729-734(2015). https://doi.org/10.1016/j.jfda.2015.06.007
  10. Satyanarayan, R. S. D., Ali, D. and Robert, E.-G., Virendra, M.-P., "Optimization and modeling of an electrolyzed oxidizing water based Clean-In-Place technique for farm milking systems using a pilot-scale milking system," J. Food Eng., 135, 1-10(2014). https://doi.org/10.1016/j.jfoodeng.2014.02.019
  11. Huang, Y. R., Huang, Y. C., Hsu, S.-Y., Huang, Y.-W., Hsieh, and Hwang, D. F., "Application of electrolyzed water in the food industry," Food Control., 19, 329-345(2008). https://doi.org/10.1016/j.foodcont.2007.08.012
  12. Bek, R. Y. and Shuraeva, L. I., "The Near-Electrode Layer Composition and Diffusion Polarization Inherent in Electrolysis of Copper-plating Cyanide Solutions with a Mild Excess of the Ligand," Russ. J. Electrochem., 33(2), 114-118(1997).
  13. Kasai, H., Watanabe, K. and Yoshimizu, M., "Bactericidal effect of continuous flow electrolyzer on hatchery wasteseawater," Fish. Sci., 67, 222-225(2001, In Japanese with English abstracts). https://doi.org/10.2331/suisan.67.222
  14. Kim, D. S. and Park, Y. S., "Effect of Disinfection Process Combination on E. coli Deactivation and Oxidants Generation," J. Environ. Sci., 20(7), 891-898(2011). https://doi.org/10.1016/S1001-0742(08)62143-9
  15. Zhang, C., Li, B., Jadeja, R. and Hung, Y.-C., "Effects of Electrolyzed Oxidizing Water on Inactivation of Bacillus subtilis and Bacillus cereus Spores in Suspension and on Carriers," J. Food Sci., 81(1), 144-149(2016). https://doi.org/10.1111/1750-3841.13169
  16. Cheng, K., Dev, S. R. S., Bialka, K. L. and Demirci, A., "Electrolyzed oxidizing water for food decontamination," Ngadi, Demirci (Eds.), Microbial Decontamination in the Food Industry: Novel Methods and Applications. Woodhead Publishing, eISBN 9780857090850, pISBN 978085709575(2012).