DOI QR코드

DOI QR Code

A simple practical method for determination of moisture transfer coefficient of mature concrete using a combined experimental-numerical approach

  • Received : 2014.10.30
  • Accepted : 2016.04.20
  • Published : 2016.09.25

Abstract

In this paper, a simple practical method is introduced in which a simple weight measurement of concrete and finite element numerical analysis are used to determine the moisture transfer coefficient of concrete with a satisfactory accuracy. Six concrete mixtures with different water-to-cementitious material (w/cm) ratios and two pozzolanic materials including silica fume and zeolite were examined to validate the proposed method. The comparison between the distribution of the moisture content obtained from the model and the one from the experimental data during both the wetting and drying process properly validated the performance of the method.With the proposed method, it was also shown that the concrete moisture transfer coefficient considerably depends on the pore water saturation degree. The use of pozzolanic materials and also lowering w/cm ratio increased the moisture transfer coefficient during the initial sorption, and then, it significantly decreased with an increase in the water saturation degree.

Keywords

Acknowledgement

Supported by : University of Tehran

References

  1. Ahmadi, B. and Shekarchi, M. (2010), "Use of natural zeolite as a supplementary cementitious material", Cem. Concr. Compos., 32(2), 134-141. https://doi.org/10.1016/j.cemconcomp.2009.10.006
  2. Akita, H., Fujiwara, T. and Ozaka, Y. (1997), "A practical procedure for the analysis of moisture transfer within concrete due to drying", Mag. Concr. Res., 49(179), 129-137. https://doi.org/10.1680/macr.1997.49.179.129
  3. Aquino, W., Hawkins, N.M. and David, A.L. (2004), "Moisture distribution in partially enclosed concrete", ACI Mater. J., 101(4), 259-265.
  4. Ayano, T. and Wittmann, F.H. (2002), "Drying, moisture distribution, and shrinkage of cement based materials", Mater. Struct., 35(3), 134-140. https://doi.org/10.1007/BF02533581
  5. Ba, M.F., Qian, C.X., and Gao, G.B. (2014), "Nonlinear calculation of moisture transport in underground concrete", Comput. Concrete, 13(3), 361-375. https://doi.org/10.12989/cac.2014.13.3.361
  6. Baroghel-Bouny, V., Thiéry, M. and Wang, X. (2011), "Modelling of isothermal coupled moisture-ion transport in cementitious materials", Cem. Concr. Res., 41(8), 828-841. https://doi.org/10.1016/j.cemconres.2011.04.001
  7. Bazant, Z.P. and Najjar, L.J. (1971), "Drying of concrete as a nonlinear diffusion problem", Cem. Concr. Res., 1(5), 461-473. https://doi.org/10.1016/0008-8846(71)90054-8
  8. Bazant, Z.P. and Najjar, L.J. (1972), "Nonlinear water diffusion in nonsaturated concrete", Mater. Struct., 5(25), 3-20.
  9. Brunauer, S., Emmett, P.H. and Teller, E. (1938), "Adsorption of gases in multimolecular layers", J. Am. Chem. Soc., 60(2), 309-319. https://doi.org/10.1021/ja01269a023
  10. Buchwald, A. (2000), "Determination of the ion diffusion coefficient in moisture and salt loaded masonry materials by impedance spectroscopy", Proceedings of the Third international symposium, Vienna, Austria.
  11. Carlier, J.P., Rougelot, T.H. and Burlion, N. (2012), "Performance evaluation of models describing sorption isotherm in cementitious materials between saturation and oven dryness", Constr. Build. Mater., 37, 58-66. https://doi.org/10.1016/j.conbuildmat.2012.07.032
  12. Carpenter, T.A., Davies, E.S., Hall, C., Hall, L.D., Hoff, W.D. and Wilson, M.A. (1993), "Capillary water migration in rock: process and material properties examined by NMR imaging", Mater. Struct., 26(5), 286-292. https://doi.org/10.1007/BF02472950
  13. Claisse, P.A., Eisayad, B.I. and Shaaban, I.G. (1997), "Absorption and sorptivity of cover concrete", J. Mater. Civ. Eng., 9(3), 105-110. https://doi.org/10.1061/(ASCE)0899-1561(1997)9:3(105)
  14. Conciatori, D., Bruhwiler, E. and Gysler, R. (2011), "Brine Absorption in Concrete at Low Temperature:Experimental Investigation and Modeling", J. Mater. Civ. Eng., 23(6), 846-851. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000238
  15. Conciatori, D., Sadouki, H. and Bruhwiler, E. (2008), "Capillary suction and diffusion model for chloride ingress into concrete", Cem. Concr. Res., 38(12), 1401-1408. https://doi.org/10.1016/j.cemconres.2008.06.006
  16. Crank, J. (1975), The mathematics of diffusion, (2nd Edition), Clarendon Press, Oxford, UK.
  17. Dietl, C., Winter, E. and Viskanta, R. (1998), "An efficient simulation of the heat and mass transfer processes during drying of capillary porous, hygroscopic materials", Int. J. Heat Mass Transfer, 41(22), 3611-3625. https://doi.org/10.1016/S0017-9310(97)00357-8
  18. Dousti, A., Moradian, M., Taheri, S., Rashetnia, R., and Shekarchi, M. (2013), "Corrosion assessment of RC deck in a Jetty structure damaged by chloride attack", J. Perform Constr. Fac., 27(5), 519-528. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000348
  19. Glouannec, Z.P. and Salagnac, P. (2012), "Estimation of moisture transport coefficients in porous materials using experimental drying kinetics", Int. J. Heat Mass Transfer, 48(2), 205-215. https://doi.org/10.1007/s00231-011-0870-0
  20. Hall, C. and Hoff, W.D. (2001), Water transport in brick, stone, and concrete, CRC Press, USA.
  21. Hallaji, M., Seppanen, A., and Pour-Ghaz, M. (2015), "Electrical resistance tomography to monitor unsaturated moisture flow in cementitious materials", Cement Concrete Res., 69, 10-18.
  22. Hanzic, L., Kosec, L. and Anzel, I. (2010), "Capillary absorption in concrete and the Lucas-Washburn equation", Cement Concrete Compos., 32(1), 84-91. https://doi.org/10.1016/j.cemconcomp.2009.10.005
  23. Hong, K. and Hooton, R.D. (1999), "Effects of cyclic chloride exposure on penetration of concrete cover", Cement Concrete Res., 29(9), 1379-1386. https://doi.org/10.1016/S0008-8846(99)00073-3
  24. Hoseini, M., Bindiganavile, V. and Banthia, N. (2009), "The effect of mechanical stress on permeability of concrete: A review", Cement Concrete Compos., 31(4), 213-220. https://doi.org/10.1016/j.cemconcomp.2009.02.003
  25. Hubert, F.X., Burlion, N. and Shao., J.F. (2003), "Drying of concrete: modeling of a hydric damage", Mater. Struct., 36(1), 12-21. https://doi.org/10.1007/BF02481566
  26. Idiart, A.E., Lopez, C.M. and Carol, I. (2011), "Modeling of drying shrinkage of concrete specimens at the meso-level", Mater. Struct., 44(2), 415-435. https://doi.org/10.1617/s11527-010-9636-2
  27. Iqbal, P.O. and Ishida, T. (2009), "Modeling of chloride transport coupled with enhanced moisture conductivity in concrete exposed to marine environment", Cement Concrete Res., 39(4), 329-339. https://doi.org/10.1016/j.cemconres.2009.01.001
  28. Ishida, T., Maekawa, K. and Kishi, T. (2007), "Enhanced modeling of moisture equilibrium and transport in cementitious materials under arbitrary temperature and relative humidity history", Cement Concrete Res., 37(4), 565-578. https://doi.org/10.1016/j.cemconres.2006.11.015
  29. Janssen, H., Blocken, B. and Carmeliet, J. (2007), "Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation", Int. J. Heat Mass Transfer, 50(5-6), 1128-1140. https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.048
  30. Janz, M. (1997), "Methods of measuring the moisture diffusivity at high moisture levels", Research Report TVBM-3076, Division of Building Materials, Lund Institute of technology, University of Lund.
  31. Janz, M. (2002), "Moisture diffusivities evaluated at high moisture levels from a series of water absorption tests", Mater. Struct., 35(3), 141-148. https://doi.org/10.1007/BF02533582
  32. Kim, J.K. and Lee, C.S. (1998), "Prediction of differential drying shrinkage in concrete", Cement Concrete Res., 28(7) 985-994. https://doi.org/10.1016/S0008-8846(98)00077-5
  33. Kodikara, J. and Chakrabarti, S. (2005), "Modeling of moisture loss in cementitiously stabilized pavement materials", Int. J. Geomech., 5(4), 295-303. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:4(295)
  34. Lin, G., Liu, Y. and Xiang, Z. (2010), "Numerical modeling for predicting service life of reinforced concrete structures exposed to chloride environments", Cement Concrete Compos., 32(8), 571-579. https://doi.org/10.1016/j.cemconcomp.2010.07.012
  35. Lockington, D., Parlange, J. and Dux, P. (1999), "Sorptivity and the estimation of water penetration into unsaturated concrete", Mater. Struct., 32(5), 342-347. https://doi.org/10.1007/BF02479625
  36. Maekawa, K., Ishida, T. and Kishi, T. (2003), "Multi-scale modeling of concrete performance-integrated materials and structural mechanics", J. Adv. Concrete Tech. (JCI), 1(2), 91-126. https://doi.org/10.3151/jact.1.91
  37. Martin-Perez, B. (1999), "Service life modelling of R.C. highway structures exposed to chlorides", Ph.D. Thesis, University of Toronto, Toronto.
  38. Martin-Perez, B., Pantazopoulou, S.J. and Thomas, M.D.A. (2001), "Numerical solution of mass transport equations in concrete structures", Comput. Struct., 79(13), 1251-1264. https://doi.org/10.1016/S0045-7949(01)00018-9
  39. Martys, N. and Ferraris, C.F. (1997), "Capillary transport in mortar and concrete", Cement Concrete Res., 27(5), 747-760. https://doi.org/10.1016/S0008-8846(97)00052-5
  40. McCarter, W.J. (1993), "Influence of surface finish on sorptivity on concrete", J. Mater. Civ. Eng., 5(1), 130-136. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:1(130)
  41. McCarter, W.J., Watson, D.W. and Chrisp, T.M. (2001), "Surface zone concrete: drying, absorption, and moisture distribution", J. Mater. Civ. Eng., 13(1), 49-57. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:1(49)
  42. Moradian, M., Chini, M., and Shekarchi, M. (2014), "Durability performance of a structure made with highperformance concrete and prefabricated elements in a marine environment", J. Perform Constr. Fac., 29(6), 04014174. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000668
  43. Morgan, R.D. (1988), "Dry-mixed silica fume shotcrete in western canada", Concrete Int., 10(1), 24-32.
  44. Navarri, P. and Andrieu, J. (1993), "High-intensity infrared drying study: part II. Case of thin coated films", Chem. Eng. Process, 32(5), 319-325. https://doi.org/10.1016/0255-2701(93)85016-9
  45. Neithalath, N. (2006), "Analysis of moisture transport in mortars and concrete using sorption-diffusion approach", ACI Mater. J., 103(3), 209-217.
  46. Nguyen, T.Q., Petkovic, J., Dangla, P. and Baroghel-Bouny, V. (2008), "Modelling of coupled ion and moisture transport in porous building materials", Constr. Build. Mater., 22(11), 2185-2195. https://doi.org/10.1016/j.conbuildmat.2007.08.013
  47. Nilsson, L.O. (2002), "Long-term moisture transport in high performance concrete", Mater. Struct., 35(10), 641-649. https://doi.org/10.1617/13972
  48. Parrott, L.J. (1994), "Moisture conditioning and transport properties of concrete test specimens", Mater. Struct., 27(8), 460-468. https://doi.org/10.1007/BF02473450
  49. Peuhkuri, R., Rode, C. and Hansen, K.K. (2008), "Non-isothermal moisture transport through insulation materials", Build. Envir., 43(5), 811-822. https://doi.org/10.1016/j.buildenv.2007.01.021
  50. Prazak, J., Tywoniak, J., Peterka, F. and Slonc, T. (1990), "Description of transport of liquid in porous media-a study based on neutron radiography data", Int. J. Heat Mass Transfer, 33(6), 1105-1120. https://doi.org/10.1016/0017-9310(90)90244-O
  51. Qin, M., Belarbi, R. and Ait-Mokhtar, A. (2009), "Coupled heat and moisture transfer in multi-layer building materials", Constr. Build. Mater., 23(2), 967-975. https://doi.org/10.1016/j.conbuildmat.2008.05.015
  52. Roy, S.K., Northwood, D.O. and Aldred, J.M. (1995), "Relative effectiveness of different admixtures to prevent water penetration in concrete", Proceedings of the Conchem Conference, Brussels, Belgium.
  53. Sabir, B.B., Wild, S. and O'Farrell, M. (1998), "A water sorptivity test for mortar and concrete", Mater. Struct., 31(8), 568-574. https://doi.org/10.1007/BF02481540
  54. Saetta, A.V., Scotta, R.V. and Vitaliani, R.V. (1993), "Analysis of chloride diffusion into partially saturated concrete", ACI Mater. J., 90(5), 441-451.
  55. Samson, E., Maleki, K., Marchand, J. and Zhang, T. (2008), "Determination of the water diffusivity of concrete using drying/absorption test results", J. ASTM Int., 5(7), 1-12.
  56. Sarkar, K. and Bhattacharjee, B. (2014), "Moisture distribution in concrete subjected to rain induced wetting-dryin", Comput. Concrete, 14(6), 635-656. https://doi.org/10.12989/cac.2014.14.6.635
  57. Shekarchi, M., Bonakdar, A., Bakhshi, M., Mirdamadi, A. and Mobasher, B. (2010), "Transport properties in metakaolin blended concrete", Constr. Build. Mater., 24(11), 2217-2223. https://doi.org/10.1016/j.conbuildmat.2010.04.035
  58. Valipour, M., Pargar, F., Shekarchi, M., Khani, S. and Moradian, M. (2013), "In situ study of chloride ingress in concretes containing natural zeolite, metakaolin and silica fume exposed to various exposure conditions in a harsh marine environment", Constr. Build. Mater., 46, 63-70. https://doi.org/10.1016/j.conbuildmat.2013.03.026
  59. Wang, B.X. and Fang, Z.H. (1988), "Water absorption and measurement of the mass diffusivity in porous media", Int. J. Heat Mass Transfer, 31(2), 251-257. https://doi.org/10.1016/0017-9310(88)90007-5
  60. Wanga, L. and Ueda, T. (2011), "Mesoscale modeling of water penetration into concrete by capillary absorption", Ocean Eng., 38(4), 519-528. https://doi.org/10.1016/j.oceaneng.2010.12.019
  61. West, R.P. and Holmes, N. (2001), "Experimental investigation of moisture migration in concrete", Proceedings of the Colloquium on Concrete Research, Ireland, September.
  62. Xi, Y., Bazant, Z.P. and Jennings, H.M. (1994), "Moisture diffusion in cementitious materials adsorption isotherms", Adv. Cement Based Mater., 1(6), 248-257. https://doi.org/10.1016/1065-7355(94)90033-7
  63. Xi, Y., Bazant, Z.P., Molina, L. and Jennings, H.M. (1994b), "Moisture diffusion in cementitious materials-Moisture capacity and diffusion", Adv. Cement Based Mater., 1(6), 258-266. https://doi.org/10.1016/1065-7355(94)90034-5
  64. Yang, Z., Weiss, W.J. and Olek, J. (2006), "Water transport in concrete damaged by tensile loading and freeze-thaw cycling", J. Mater. Civ. Eng., 18(3), 424-434. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(424)
  65. Yoo, J.H., Lee, H.S. and Ismail, M.A. (2011), "An analytical study on the water penetration and diffusion into concrete under water pressure", Constr. Build. Mater., 25(1), 99-108. https://doi.org/10.1016/j.conbuildmat.2010.06.052
  66. Zhang, W., Tong, F., Gu, X. and Xi, Y. (2015), "Study on moisture transport in concrete in atmospheric environment", Comput. Concrete, 16(5), 775-793. https://doi.org/10.12989/cac.2015.16.5.775

Cited by

  1. Prediction of chloride ingress into blended cement concrete: Evaluation of a combined short-term laboratory-numerical procedure vol.162, 2018, https://doi.org/10.1016/j.conbuildmat.2017.12.064
  2. An experimental and numerical study on long-term deformation of SRC columns vol.22, pp.3, 2016, https://doi.org/10.12989/cac.2018.22.3.261
  3. The impact of calcium stearate on characteristics of concrete vol.20, pp.7, 2019, https://doi.org/10.1007/s42107-019-00161-x