DOI QR코드

DOI QR Code

Evaluation of Rocking Mechanism for Embedded Shallow Foundation via Horizontal Slow Cyclic Tests

수평반복하중 실험을 이용한 근입된 얕은 기초의 회전거동 메커니즘 평가

  • 고길완 (한국과학기술원 건설 및 환경공학과) ;
  • 하정곤 (한국과학기술원 건설 및 환경공학과) ;
  • 박헌준 (한국과학기술원 건설 및 환경공학과) ;
  • 김동수 (한국과학기술원 건설 및 환경공학과)
  • Received : 2016.05.31
  • Accepted : 2016.08.06
  • Published : 2016.08.31

Abstract

Rocking behavior of shallow foundation reduces the superstructure load during earthquake. However, because of deficiency of understanding of rocking mechanism and soil permanent deformation, it has not been applied to real construction. In this study, slow cyclic tests were conducted for embedded shallow foundations with various slenderness ratio via centrifuge tests. From the variation of earth pressure 'soil rounding surface' phenomenon which makes maximum overturning moment equal to ultimate moment capacity was observed. Rocking and sliding behavior mechanism was evaluated. Also, nonlinear behavior and energy dissipation increase as rotation angle increases. And ultimate moment capacity of embedded foundation is larger than that of surface foundation. Finally, adequate ultimate moment capacity can be suggested for seismic design through this study.

얕은 기초의 회전거동은 지진 시 상부 구조물의 지진하중을 줄이는 효과적인 방법으로 대두되고 있다. 그러나 회전거동의 메커니즘에 대한 이해부족과 항복거동으로 인한 지반변형 때문에 시공에 적용되지 못하고 있다. 본 연구에서는 원심모형실험을 이용한 수평반복하중 실험을 통해 세장비가 다른 시스템의 근입된 얕은 기초의 회전거동 특성을 평가하였다. 실험결과를 통해 기초의 회전거동으로 인한 하부지반면의 원형현상을 관찰하였으며, 이로 인해 기초의 최대 전도모멘트가 기초의 극한 모멘트 지지력과 같아지는 것을 알 수 있었다. 기초 저면에서 관측된 토압변화를 통해 항복거동으로 인한 수평거동과 회전거동의 연결(coupling)과 분리(decoupling)현상을 볼 수 있었다. 또한 기초의 회전각이 증가할수록 지반의 비선형성과 에너지 감쇠가 커짐을 알 수 있었고, 근입된 기초의 극한 모멘트 지지력이 지표면에 놓인 기초의 극한 모멘트 지지력보다 더 커지는 것을 확인하였다. 본 연구를 통해 기초의 회전거동을 이용한 내진 설계 시 보다 정확하고 적절한 기초의 극한 모멘트 지지력을 제시할 수 있을 것이라 판단된다.

Keywords

References

  1. Anastasopoulos, I., Gazetas, G., Loli, M., Apostolou, M., and Gerolymos, N. (2009), "Soil Failure Can be used for Seismic Protection of Structures", Bulletin of Earthquake Engineering, Vol.8, No.2, pp.309-326.
  2. Anastasopoulos, I., Gelagoti, F., Kourkoulis, R., and Gazetas, G. (2011), "Simplified Constitutive Model for Simulation of Cyclic Response of Shallow Foundations: Validation against Laboratory Tests", J. Geotech. Geoenviron. Eng., Vol.137, No.12, pp.1154-1168. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000534
  3. Anastasopoulos, I., Kourkoulis, R., Gelagoti, F., and Papadopoulos, E. (2012), "Rocking Response of SDOF Systems on Shallow Improved Sand: An Experimental Study", Soil Dynamics and Earthquake Engineering, Vol.40, pp.15-33. https://doi.org/10.1016/j.soildyn.2012.04.006
  4. Deng, L. and Kutter, B. (2011), "Characterization of Rocking Shallow Foundations using Centrifuge Model Tests", Earthquake Engng Struct. Dyn., Vol.41, No.5, pp.1043-1060.
  5. Gajan, S., Kutter, B., Phalen, J., Hutchinson, T., and Martin, G. (2005), "Centrifuge Modeling of Load-deformation behavior of Rocking Shallow Foundations", Soil Dynamics and Earthquake Engineering, Vol.25, No.7, pp.773-783. https://doi.org/10.1016/j.soildyn.2004.11.019
  6. Gajan, S. and Kutter, B. L. (2008), "Effect of Critical Contact Area Ratio on Moment Capacity of Rocking Shallow Footings." Geotechnical Earthquake Engineering and Soil Dynamics IV (pp. 1-11). ASCE.
  7. Gajan, S. and Kutter, B. (2009), "Effects of Moment-to-shear Ratio on Combined Cyclic Load-displacement behavior of Shallow Foundations from Centrifuge Experiments", J. Geotech. Geoenviron. Eng., Vol.135, No.8, pp.1044-1055. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000034
  8. Housner, G. W. (1963), "The behavior of Inverted Pendulum Structures during Earthquakes", Bulletin of the Seismological Society of America, Vol.53, No.2, pp.403-417
  9. Kim, D., Kim, N., Choo, Y., and Cho, G. (2013), "A Newly Developed State-of-the-art Geotechnical Centrifuge in Korea", KSCE Journal of Civil Engineering, Vol.17, No.1, pp.77-84. https://doi.org/10.1007/s12205-013-1350-5
  10. Kim, D., Lee, S., Kim, D., Choo, Y., and Park, H. (2015), "Rocking Effect of a Mat Foundation on the Earthquake Response of Structures", J. Geotech. Geoenviron. Eng., Vol.141, No.1, p.04014085. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001207
  11. Kokkali, P., Abdoun, T., and Anastasopoulos, I. (2015), "Centrifuge Modeling of Rocking Foundations on Improved Soil", J. Geotech. Geoenviron. Eng., Vol.141, No.10, p.04015041. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001315
  12. Meyerhof, G. G. (1951), "The Ultimate Bearing Capacity of Foundations", Geotechnique 2, No.4, pp.301-332 https://doi.org/10.1680/geot.1951.2.4.301
  13. Mylonakis, G., Syngros, C., Gazetas, G., and Tazoh, T. (2006), "The Role of Soil in the Collapse of 18piers of Hanshin Expressway in the Kobe Earthquake", Earthquake Engineering and Structural Dynamics, Vol.35, pp.547-575 https://doi.org/10.1002/eqe.543
  14. Panagiotidou, A., Gazetas, G., and Gerolymos, N. (2012), "Pushover and Seismic Response of Foundations on Stiff Clay: Analysis with P-Delta Effects", Earthquake Spectra, Vol.28, No.4, pp.1589-1618. https://doi.org/10.1193/1.4000084
  15. Schofield, A. (1980), "Cambridge Geotechnical Centrifuge Operations", Geotechnique, Vol.30, No.3, pp.227-268. https://doi.org/10.1680/geot.1980.30.3.227

Cited by

  1. Soil-Rounding Effect on Embedded Rocking Foundation via Horizontal Slow Cyclic Tests vol.144, pp.3, 2018, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001848
  2. Natural Frequencies of Model Piers under Different Ground Support Conditions vol.21, pp.1, 2021, https://doi.org/10.9798/kosham.2021.21.1.239