http://dx.doi.org/10.7735/ksmte.2016.25.4.245

Best Paper of This Month

J. Korean Soc. Manuf. Technol. Eng. ISSN 2283-4846(Online) / ISSN 2233-6036(Print)

핀 휠 기반 거스 기어의 접촉 피로수명 평가

권순만^{a*}, 신흥철^a

Estimation of Contact Fatigue Life of a Girth Gear Based on Pinwheel

Soon-man Kwon^{a*}, Heung Chul Shin^a

^a School of Mechanical Engineering, Changwon National University, 20, Changwondaehak-ro, Uichang-gu, Changwon, Gyeongnam-do, 51140, Korea

ARTICLE INFO

Received 11 July 2016 Revised 14 August 2016 Accepted 14 August 2016 <i>Keywords:</i> Girth gear e-PGS (external pinwheel gear set) Pinwheel Cam pinion Load-stress factor	Article histo	ory:				
Revised 14 August 2016 Accepted 14 August 2016 <i>Keywords:</i> Girth gear e-PGS (external pinwheel gear set) Pinwheel Cam pinion Load-stress factor	Received	11	July	2016		
Accepted 14 August 2016 <i>Keywords:</i> Girth gear e-PGS (external pinwheel gear set) Pinwheel Cam pinion Load-stress factor	Revised	14	August	2016		
<i>Keywords:</i> Girth gear e-PGS (external pinwheel gear set) Pinwheel Cam pinion Load-stress factor	Accepted	14	August	2016		
Pitting life	Keywords: Girth gear e-PGS (external pinwheel gear set) Pinwheel Cam pinion Load-stress factor					

ABSTRACT

Girth gears are applied in the mining, cement, and mineral processing industries and used in various types of horizontal mills, rotary dryers and kilns, and other heavy-gear ring applications. The large ring gears are normally fitted outside mills or kilns to provide the primary rotational drive. Recently, an external pinwheel gear set (e-PGS) was introduced to overcome manufacturing problems associated with girth gears. e-PGS is also suitable for low-speed, heavy-duty mechanical transmission and dusty and poor-lubrication conditions. This paper first presents a new profile modification of root relief for the e-PGS cam pinion. We then investigate load-stress factors to estimate the surface fatigue life by varying the shape design parameters. The results show that the contact fatigue life of an e-PGS can be extended significantly by increasing the profile shift coefficient. However, support bearing life of the pinwheel depends more on the contact force distribution than the profile shift coefficient.

1. 서 론

로터리 킬른(rotary kiln)은 회전식 소성로의 일종으로서 석회 및 시멘트 제조, 각종 금속의 환원, 폐기물 처리 및 소각, 식품 가 공 등 다양한 산업분야에서 활용되고 있다. 전통적인 로터리 킬른 은 원통형 용기 형태로 수평면에서 약간 기울어진 형태로 설치되 어 운전되며, 원통 외경에 제작된 거스 기어(girth gear)를 통해 동력을 전달받는다. 최근, 직경이 수 m에 이르는 대형 거스 기어 를 롤러(roller) 치형으로 대체하여 대형 링 기어 가공의 문제를 해소시킬 수 있는 외륜형 핀 휠 기어 쌍(external pinwheel gear set, 이하 e-PGS)이 제안^[1]된 바 있으며, Kwon^[2]이 전위계수 (addendum modification coefficient)의 개념을 도입하여 e-

PGS 캠 피니언의 엄밀 치형 설계 및 면압강도 해석을 수행한 바 있다.

본 논문에서는 e-PGS 기반 거스 기어를 대상으로 핀 휠의 롤러 와 치물림 시 과도한 밀착으로 인한 소음·진동을 회피하고자 캠 피니언의 이뿌리 수정방법을 소개하고자 한다 (Fig. 1 참조). 그리 고 핀 휠 기반 거스 기어를 선회시키는 과정에 있어 캠 피니언에 인가되는 가변 구동 토크를 고려하여 e-PGS 캠 피니언의 접촉력, 접촉응력 및 하중응력계수(load-stress factor)^[3] 변화를 고찰하고, 이를 통해 캠 피니언, 핀 휠의 롤러 그리고 롤러 지지 베어링에 대 한 접촉 피로수명을 평가함으로써 핀 휠 기반 거스 기어의 내구설 계에 일조하고자 한다.

^{*} Corresponding author. Tel.: +82-55-213-3629 Fax: +82-55-263-5221

E-mail address: smkwon@changwon.ac.kr (Soon-man Kwon).

Fig. 1 Schematic for a rotary kiln based on e-PGS

2. 이뿌리 치형 수정

Fig. 2는 e-PGS 캠 피니언의 형상을 결정하기 위한 개념도이며, 상세 설계방법 및 용어 정의는 Kwon^[2]의 결과를 시종일관 참조하 였다. Fig. 3은 그림 내의 주어진 형상설계 제원을 바탕으로 캠 피 니언 회전각에 따른 압력각의 변화를 나타냈으며, 허용압력각 (allowable pressure angle, α_a)을 초과하는 또는 (φ₃)_a 보다 작은 캠 피니언 회전각 구간에 해당하는 이뿌리 부위의 초기 물림영역 (음영 도시 영역)에서는 불필요한 측력이 유발된다. 이 때, 허용압 력각에 해당하는 캠 피니언 회전각 (φ₃)_a는 다음과 같이 결정할 수 있다.

$$\left(\phi_{3}\right)_{a} = m_{G} \left[2 \tan^{-1} \left(\frac{\mu \tan \alpha_{a} - \sqrt{\mu^{2} (1 + \tan^{2} \alpha_{a}) - 1}}{1 + \mu} \right) \right]$$
 (1)

여기서 $\mu = R/r_2$, $m_G = N_2/N_3$ 이며 기어비(gear ratio)이다.

또한, 핀 휠과 캠 피니언의 회전 중심간 거리가 제작, 조립 혹은 여타 사유로 설계 값과 오차가 생길 경우, 이로 인한 과도한 측력 또는 충격력으로 소음·진동이 야기되며 결과적으로 내구수명 단축 의 주된 원인이 될 수 있다. 따라서 허용압력각을 초과하는 캠 피니 언의 이뿌리 부위($0 \le \phi_3 \le (\phi_3)_a$)는 차라리 롤러와의 접촉을 회피 하도록 치형수정(tooth modification)하는 것이 최선이다.

이를 위한 캠 피니언의 이뿌리 치형 수정방법에는 가상전위계수 (e_1), 가상롤러직경계수(C_{r1}) 그리고 가상모듈(m_1) 조정 등의 방법 을 통해 구현⁽⁴⁾할 수 있다. Fig. 4는 3가지 치형 수정 방법을 적용 하여 캠 피니언의 이뿌리부를 수정한 일례를 도시하였다. 각각의 방법들은 적절한 e_1 , C_{r1} , m_1 값들을 설정함으로써 부드러운 수정 치형 곡선을 획득할 수 있다. 하지만 이 중 전위계수 조정 방법은

Fig. 2 Schematic for e-PGS cam pinion profile design

스프로킷 치형 설계^[5] 시에서와 같이 설계 전위계수 값이 미소 값 을 가질 경우 치형 수정이 곤란하며, 모듈 조정 방법은 관례적으 로 기어 표준을 정립하는 데 있어 혼란을 유도할 수 있으므로 본 논문에서는 롤러직경계수 조정 방법을 통한 치형 수정 방법에 대 해서만 언급하고자 한다.

Fig. 5는 캠 피니언 이뿌리부를 수정하기 위해 가상의 롤러직경 계수들을 적용하여 이뿌리 치형 일부를 수정해나가는 과정을 도시 한 그림이다. 즉, 식 (1)을 통해 이뿌리 수정 범위를 결정할 총 t개 의 캠 피니언 회전각($\phi_{3k}, k = 1, 2, \dots, t$)들을 획득할 수 있으며, 초 기 캠 피니언 회전각($\phi_{31}=0^{\circ}$)에 상응하는 초기 가상롤러직경계수 (C_{r1})를 설계 롤러직경계수(C_r)보다 약간 크게 설정하고, 이를 e-PGS 캠 피니언 치형결정식^[2]에 대입하여 최초 수정 치형 좌표 (Fig. 5의 점 1)를 획득한다. 다음으로, C_{r1} 을 미소 중분량(ΔC_r) 만큼 순차적으로 감소시킨 2번째, 3번째, \dots, i -번째 가상 롤러직경 계수들($C_{r2}, C_{r3}, \dots, C_{ri}$)과 획득한 캠 피니언 회전각들($\phi_{32}, \phi_{33}, \dots, \phi_{3i}$)을 e-PGS 캠 피니언 치형결정식^[2]에 대입하여 Fig. 5의 ②, ③, $\dots,$ ①의 수정 치형 좌표들을 획득한다. 이 때, i-번째 가상롤 러직경계수(C_{ri})는 초항이 C_{r1} 이며 공차가 ($-\Delta C_r$)인 등차수열 의 꼴로 다음과 같다.

$$C_{ri} = C_{r1} - (i-1)\Delta C_r \tag{2}$$

최종적으로 상기 과정을 i=t일 때까지, 즉 $(\phi_3)_a$ 에 대응되는 수 정 치형 좌표(Fig. 5의 점 ①)에 도달할 때까지 시행하여 총 t개의 독자적인 수정된 치형 좌표들을 획득할 수 있다.

Fig. 5 Procedure for root relief of e-PGS

접촉응력

3.1 구동토크

핀 휠 기반 거스 기어 구동용 캠 피니언에는 구동토크의 가변특 성으로 인해 매순간 일정치 않은 변동하중이 발생된다. 하지만 이 러한 구동토크의 변화는 구분연속(piecewise continuous) 특성을 갖는 혹은 주기적으로 발생하는 일련의 패턴으로 식별할 수 있고 (Fig. 6 참조), 각 구간별 하중적용계수(a_{fi})를 고려한 e-PGS 캠 피니언의 등가 구동토크를 다음과 같이 결정할 수 있다.

$$T_e = \left[\sum f_i (a_{fi} T_i)^a\right]^{1/a} \tag{3}$$

여기서 $f_i(=n_i/\sum n_j)$ 는 회전수 분율(turns fraction), T_i 는 구간별 토크이며 a=10/3 이다.

3.2 설계변수

본 논문에서는 e-PGS 캠 피니언에 대한 내구성을 평가하기 위해 실제 거스 기어의 설계제원^[6]을 참조하여 Table 1과 같은 설계제 원을 고려하였다. 또한, 각 구간별로 발생하는 변동토크제원(Table

Fig. 6 Torque duty cycle

Table 1	Cam	pinion	shape	design	parameters
	~~~~	P			parameters

Design parameters	Values
Module, m	27 (mm)
No. of pinwheel teeth, $N_2$	253
No. of cam pinion teeth, $N_{\rm 3}$	23
Roller diameter coefficient, $C_r$	1.5
Profile shift coefficient, $e$	0.05, 0.10, 0.20
Addendum extension factor, $\beta$	1.7, 2.2
Face width, L	320 (mm)

2 참조)과 식 (3)에 의해 등가 구동토크(*T_e*)를 산출하였고, 이를 캠 피니언 내구 평가를 위한 입력 토크(*T_{in}*)로 선정하였다.

# 3.3 접촉력

Fig. 7과 같이 캠 피니언의 중심  $I_{13}$ 에 입력 토크  $T_{in}$ 이 주어질 경우, 임의의 회전각  $\theta_i$ 에 위치한 i-번째 롤러와 캠 피니언과의 접 촉력  $F_i$ 는 변형을 고려한 부정정 문제 접근¹²¹을 통해 다음과 같이 결정할 수 있다.

$$F_{i} = \frac{T_{in}l_{i}}{\sum_{j=1}^{n}l_{j}^{2}}, \quad (i=1,2,3,\cdots,n)$$
(4)

여기서  $l_i$ 는 모멘트 암, n은 핀 휠과 캠 피니언 간의 초기 접촉 개소 를 의미하고 각각은 다음과 같다.

$$l_i = \begin{cases} r_3 \cos \alpha_i & (0 \le \alpha_i < \alpha_a) \\ 0 & (\alpha_a \le \alpha_i < \pi) \end{cases}$$
(5)

$$n = 2[\beta] + 1 \tag{6}$$

참고로 치형 수정 전 식 (5)의 허용압력각 α_a = π/2이며, 본 논문 에서는 이를 시종일관하게 허용압력각으로 고려하였다. 식 (6)의 [·]는 Gauss 기호이다.

치형 수정 전 초기 접촉위치에서는 홀수개의 동시 접촉점이 나타 나며, 이때 핀 휠의 중앙에 있는 롤러를  $n_c$ -번째 롤러라고 정의하

	$f_i$	$a_{fi}$	$T_i \text{ (kN \cdot m)}$	$T_e \text{ (kN \cdot m)}$
Segment 1	0.11	2.1	10.1	
Segment 2	0.82	1.4	35.7	47.2
Segment 3	0.07	1.2	7.5	

Table 2 Torque working conditions



Fig. 7 Schematic for determination of contact force

면, 이를 기준으로 각 롤러의 회전각  $\theta_i$ 는 다음과 같이 정의할 수 있다.

$$\theta_i = (n_c - i)\phi_{2p} + \phi_2 \tag{7}$$

여기서  $\phi_2(=\phi_3/m_G)$ 는 접촉이 유지되고 힘이 작용하는 구간까지 의 핀 휠 회전각을 의미하고,  $\phi_{2p}$ 는 핀 휠 피치각(=2π/N₂)이다. 먼저 치선연장계수 β=2.2, 전위계수 e=0.20을 고려하여 캠 피니 언 회전각에 따른 접촉력 변화를 Fig. 8에 나타내었다. 여기서 캠 피니언의 회전에 따라 물림이탈이 빠른 순서로 핀 휠의 롤러들의 접촉번호를 지정하였다. Kwon^[2]의 연구결과에 의하면 물림률 ε은 치선연장계수 β의 함수로 다음과 같이 결정할 수 있다.

$$\epsilon = n - \left( \left[ \beta \right]^2 + \left[ \beta \right] \right) / \beta \tag{8}$$

따라서 β=2.2일 경우, 물림률 ε=2.27로 캠 피니언의 전체 회전 구간에 거쳐 두 쌍 이상의 치물림을 확인할 수 있었고, 유효접촉개 소가 두 쌍에서 세 쌍으로 또는 세 쌍에서 두 쌍으로 전이됨에 따라 급격한 하중 변화를 주기적으로 관찰할 수 있었다.

Fig. 9는 치선연장계수 β(또는 물림률 ε)가 접촉력에 미치는 영 향을 고찰하기 위해 β=1.7과 β=2.2를 대비한 그림이다. β=1.7일 때 물림률은 1.82로 한 쌍의 치물림으로 인한 하중전담구간이 존재 하는 반면, β=2.2일 때 물림률은 2.27로 최소 두 쌍의 치물림으로 인한 하중분담이 이루어지고, 이에 의해 동일한 설계제원일 경우 치선연장계수 β가 커짐에 따라 접촉력의 확연한 저하를 확인할 수 있다.

하지만 Fig. 10에서 볼 수 있듯이, 캠 피니언이 핀 휠과 접촉하는 동안 전위계수에 따른 접촉력 변화는 거의 인지할 수 없었다. 즉, 접촉력 분포는 치선연장계수 β에 따라 크게 변화하며 전위계수 e의 영향은 미미함을 알 수 있었다.







### 3.4 접촉응력 특성

캠 피니언의 곡률반경, 재료 물성치 그리고 식 (4)를 통해 결정된 접촉력을 이용하여 핀 휠의 *i*-번째 롤러와의 접촉점에서의 접촉응 력은 다음과 같이 결정할 수 있다.

$$\sigma_c = C_p \sqrt{K^*} \tag{9}$$

여기서 *C_p*는 AGMA 탄성계수⁷⁷이고, *K*^{*}는 보정된 하중응력계수 이며 다음과 같이 결정할 수 있다.

$$K^* = \frac{n_d F_i}{R_i^* L} \tag{10}$$

여기서 n_d는 AGMA 보정계수들을 고려한 전체 보정계수(fully



corrected factor),  $F_i$  및  $R_i^*$ 는 핀 휠의 *i*-번째 롤러와 캠 피니언과 의 접촉력 및 접촉점에서의 등가 곡률반경, *L*은 캠 피니언의 치폭 을 의미한다.

 $\beta$ =2.2, e=0.20일 때 캠 피니언 회전에 따른 접촉응력 변화를 Fig. 11에 나타내었으며, 이 때  $n_d$ =1.6,  $C_p$ =188.9 (MPa^{1/2})를 고 려하였다. 최대접촉응력  $\sigma_{cmax}$ 는 두 쌍의 치물림 구간이며 캠 피니 언의 피치점 근방( $\phi_3 = 18^\circ$ )에서 발생하며, 그림 내의 음영처리구 간은 세 쌍의 치물림 구간으로 두 쌍의 치물림 구간에 비해 하중분 담이 더 이루어지기 때문에 접촉응력이 급격히 감소된다.

Fig. 12는 전위계수에 따른 접촉응력 변화를 도시하였으며, σ_{c.max}의 발생위치는 전위계수에 따라 근소하게 달랐으며, 전위계 수가 작아질수록 최대 접촉응력의 발생위치가 초기접촉구간으로 이동함과 동시에 그 크기도 증가함을 알 수 있었다.

#### 3.5 유한요소해석을 통한 검증

앞서 고찰한 접촉응력 분포에 대한 신뢰성을 검증하기 위해 β= 1.7, e=0.20일 때 e-PGS 캠 피니언의 von Mises 응력을 Fig. 13 에 나타내었으며, 2번 롤러가 하중을 전적으로 전담하는 순간, 즉 피치점 부근에서 최대 등가응력이 관찰되었다.

Fig. 14는 Fig. 13의 최대 등가응력 발생위치에서의 유한요소해 석 결과를 나타내었다. 이론값에 대한 유한요소해석 값의 오차는 4.4%로 이론적 접근의 타당성을 확인할 수 있었다. 이 때 고려한 요소 종류(element type)는 사면체(tetrahedron) 요소이며 접촉하 는 부위의 요소 크기(contact element size)는 1.8 mm로 설정하였 다. 또한, 캠 피니언과 핀 휠 롤러 사이의 접촉 조건은 해의 수렴성 과 접촉 강성을 고려하여 "Augmented Lagrange" 방법을 사용하 였다.





Fig. 14 FE analysis result (von Mises stress)

### 4. 수명 평가

### 4.1 피팅 수명 평가

본 논문에서는 e-PGS 기반 거스 기어의 내구성을 검증하기 위해 제시한 설계제원 중 보다 가혹한 하중 특성을 가진 β=1.7일 때의 캠 피니언을 고려하여 피로수명을 예측하고자 한다.

이를 위해 고려한 표면피로 하중응력계수-수명(K-L) 평가식³¹은 다음과 같다.

$$L_{hk} = \frac{10^8}{60\omega_k} \left(\frac{K_1}{K^*}\right)^A \text{ (hr) } (k=2,3)$$
(11)

여기서  $L_{hk}$ 는 핀 휠 롤러(k=2) 또는 캠 피니언(k=3)의 시간 수 명,  $K_1$ 은 정격하중응력계수, A는 수명지수⁽³⁾이다. 또 정격하중응 력계수  $K_1$ 은 다음과 같이 결정할 수 있다.

$$K_1 = (S_c / C_p)^2$$
(12)

$$S_c = Z_N \cdot_{0.99} (S_c)_{10^7} \tag{13}$$

여기서  $S_c = 10^8$ 부하 횟수 치면피로강도,  $Z_N \in 접촉응력에 대한 응력반복수명계수, <math>_{0.99}(S_c)_{10^7} \in$ 보정 전 치면피로강도(일방향 하 중,  $10^7$ 부하 횟수, 99% 신뢰도 가정)을 나타낸다. 본 논문에서는 표면경도  $H_B$ =469인 AISI 4340 관통경화강(Grade 2)을 고려^[7]하였으며, 보정 전 치면피로강도는 다음 식으로 산정하였다.

$$_{0.99}(S_c)_{10^7} = 2.41 H_B + 237 \text{ (MPa)}$$
 (14)

Table 3은 실제 거스 기어 쌍 재료 조합 및 운전 조건이며, 전위 계수에 따른 하중응력계수 분포를 Fig. 15에 도시하였다. 그리고 식 (11)을 적용하여 전위계수 효과에 따른 접촉 피로수명 결과를 Table 4에 정리하였다. 전위계수가 증가함에 따라 캠 피니언 및 핀 휠 롤러의 피로수명이 증대되었으며, 캠 피니언의 경우 e=0.20 일 경우에만 10년 설계요구수명을 충족시킬 수 있었다. 반면 핀 휠의 롤러는 기어비(m_G=11) 특성으로 인해 고려하는 전위계수와 상관없이 모두 설계요구수명을 만족함을 알 수 있었다.

Table 3 Analysis parameters for life prediction of girth gear

Analysis parameters	Values
Rated load-stress factor, $K_{\!1}$	42.44 MPa
Life exponent, $A^{[3]}$	11.56
Pinwheel angular velocity, $\omega_2$	3 rpm
Operation hours per day	4 hrs/day
Required service life	10 years



Fig. 15 Comparison of load-stress factors

able 4 Pitting life with the variation of 6	Fable	4	Pitting	life	with	the	variation	of	e
---------------------------------------------	-------	---	---------	------	------	-----	-----------	----	---

e	$K_{\max}^*$ (MPa)	$L_{h2}$ (years)	$L_{h3}$ (years)
0.05	52.81	30.36	2.76
0.10	50.22	54.45	4.95
0.20	46.24	141.13	12.83

#### 4.2 롤러 지지 베어링 수명

핀 휠의 롤러 지지 베어링은 구조적으로 양단에서 롤러를 지지하고 있으며, 롤러에 작용하는 힘은 온전히 반경 방향의 하중으로써 지지 베어링에 작용한다. 따라서 본 거스 기어 시스템의 내구성을 평가하기 위해선 지지 베어링의 수명 또한 고찰할 필요가 있다. 즉, 베어링의 시간 수명(*L*_b)은 다음과 같이 결정할 수 있다.

$$L_{h} = a_{1}a_{2}a_{3}\frac{10^{6}}{60n_{b}}\left(\frac{C_{10}}{a_{f}P}\right)^{a} \text{ (hr)}$$
(15)

여기서  $a_1$ ,  $a_2$ ,  $a_3$ ,  $C_{10}$ ,  $a_f$ ,  $n_b$ 는 각각 신뢰도계수, 베어링 특성 계수, 사용조건 계수, 기본 동정격하중, 하중계수, 지지 베어링의 회전수를 나타낸다. 또 볼 베어링일 경우 a=3, 롤러 베어링일 경우 a=10/3이다. 그리고 롤러 표면에 작용하는 하중은 반복 주 기적인 패턴으로 매순간 크기가 변동하는 하중 특성을 가지며 이를 롤러 양단에 고정된 2개의 지지 베어링이 하중 지지 역할을 담당하므로 식 (15)의 베어링 하중 P는 다음과 같이 계산할 수 있다.

$$P = \frac{1}{2} F_{eq} = \frac{1}{2} \left[ \frac{1}{\phi_{3a}} \int_{0}^{\phi_{3a}} F^{a}(\phi_{3}) d\phi_{3} \right]^{1/a}$$
(16)

여기서 F_{ea}은 Fig. 9의 접촉력 분포를 고려한 등가 접촉력을 의미

Table 5 Support bearing life ( $\omega_2$ =3 rpm)

e	P (kN)	$n_b$ (rpm)	$L_h$ (years)
0.05	50.94	1.374	5.82
0.10	51.29	1.371	5.75
0.20	51.94	1.368	5.51

하며,  $\phi_{3a}$ 는 β를 고려한 캠 피니언 치선각이다. 그리고 β=1.7일 때 식 (15)를 적용하여 전위계수에 따른 지지 베어링의 수명을 Table 5에 정리하였다. 이 때, Table 1에 주어진 롤러직경계수  $C_r$ 과 지지 베어링 결합직경( $\phi$ 30 mm)을 고려하여 기본 동정격하중  $C_{10}$ =55 (kN)인 지지 베어링을 선정하였다. 또 설계신뢰도는 90%,  $a_f$ =1.2, 지지베어링의 회전수  $n_b$ 는 핀 휠의 회전수  $\omega_2$ =3 rpm을 고려하였다. Table 5에서 알 수 있듯이 베어링 하중 및 지 지 베어링의 회전수는 접촉력의 변화와 마찬가지로 전위효과를 거의 받지 않았으며, 이에 전위계수에 따른 베어링 수명 변화 또한 거의 없었다.

결론적으로 Table 3에 주어진 설계요구수명을 만족시키기 위해 서는 e=0.20의 전위계수를 갖는 캠 피니언만이 선택의 대상이다. 하지만 Table 5의 지지 베어링의 수명을 고려할 때 설계요구수명 내 적어도 한번 이상의 지지 베어링을 교체할 필요성이 있다.

# 5. 결 론

본 연구에서는 e-PGS 기반 거스 기어의 치물림 시 발생하는 소 음 진동을 개선하기 위해 e-PGS 캠 피니언의 이뿌리 치형 수정방 법을 제시하였으며, 또한 거스 기어 구성 요소의 피로수명을 평가 하고자 하였고 그 결과는 다음과 같다.

접촉력에 직접적인 영향을 미치는 설계제원은 치선연장계수인 반면 접촉응력은 치형 곡률반경의 주 영향 설계제원인 전위계수임 을 확인할 수 있었다. 이에, 캠 피니언과 핀 휠의 롤러는 전위계수 가 증가함에 따라 접촉 피로수명을 증가시킬 수 있었지만 지지 베 어링의 피로수명은 전위효과로부터 미미한 변화가 관찰되었다. 따 라서 설계요구수명을 만족시키기 위해서는 전위계수는 가급적 크 게 설정하되, 주기적으로 지지 베어링 교체가 요구되는 것을 알 수 있었다.

# 후기

이 논문은 2015-2016년도 창원대학교 자율연구과제 연구비 지 원으로 수행된 연구결과임.

## References

- Kwon, S. -M., Shin, H. C., 2015, Pinwheel Gear Set Having Cam Pinion of Tooth Modification, KR Patent Pending: 10-2015-0139196.
- [2] Kwon, S. -M., 2015, Contact Stress of Slewing Ring Bearing with External Pinwheel Gear Set, KSMTE, 24:2 231-237.
- [3] Morrison, R. A., 1968, Load/Life Curves for Gear and Cam Materials, Machine Design, 40:August 102-108.
- [4] Kwon, S. -M., Shin, H. C., 2015, Cam Pinion Root Relief of Girth Gear Based on e-PGS, KSMTE Annual Autumn Conference, 318.
- [5] Kwon, S. -M., 2014, Sprocket Profile Design Based on RRP System, KSMTE Annual Autumn Conference, 107.
- [6] Kumera Online Catalog, Kumera Girth Gear Technical Manual, Available from http://www.kumera.com/.
- [7] Budynas, R. G., Nisbett, J. K., 2011, Shigley's Mechanical Engineering Design, 9th ed., McGraw-Hill, New York.