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Abstract
Among the various remote sensing sensors compared to the electro-optical sensors, SAR (Synthetic Aperture 

Radar) is very suitable for assessing damaged areas induced by disaster events owing to its all-weather day and 
night acquisition capability and sensitivity to geometric variables. The conventional CD (Change Detection) 
method that uses two-date data is typically used for mapping damage over extensive areas in a short time, but 
because data from only two dates are used, the information used in the conventional CD is limited. In this paper, 
we propose a novel CD method that is extended to use data consisting of two pre-disaster SAR data and one 
post-disaster SAR data. The proposed CD method detects changes by using a similarity weight image derived 
from the neighborhood information of a pixel in the data from the three dates. We conducted an experiment 
using three single polarization ALOS PALSAR (Advanced Land Observing Satellite/Phased Array Type 
L-Band) data collected over Miyagi, Japan which was seriously damaged by the 2011 east Japan tsunami. The 
results demonstrated that the mapping accuracy for damaged areas can be improved by about 26% with an 
increase of the g-mean compared to the conventional CD method. These improved results prove the performance 
of our proposed CD method and show that the proposed CD method is more suitable than the conventional CD 
method for detecting damaged areas induced by disaster.
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1. Introduction

The frequency of natural disasters has steadily increased 
in recent years (Hoyois et al., 2007), and large-scale disasters, 
such as tsunamis and earthquakes, have become very typical 
disasters. These large-scale disasters cause many casualties 
and extensive property damage over a wide area. Rapid 
observation after these catastrophic events is crucial for 
effective emergency response and decision making. In order 
to understand the damage situation over wide areas in a short 
span, remote sensing with extensive spatial coverage has 
played an important role. 

Among the various sensors used in remote sensing, high-
resolution optical images have typically been used to detect 

damaged areas (Adams et al., 2004; Saito et al., 2004). 
However, optical images are affected by weather conditions 
and illumination. In contrast to optical sensors, a SAR 
(Synthetic Aperture Radar) is an active sensor that functions 
independently of illumination and weather conditions, and 
this makes it useful for disaster monitoring. A number of 
studies using SAR images for tsunami damage assessment 
have been reported (Chini et al., 2012; Liu et al., 2012; 
Gokon et al., 2014; Dumitru et al., 2015). In these studies, 
full polarimetric SAR images were mainly used to detect 
damage induced by tsunamis in recent years (Watanabe et 
al., 2012; Chen and Sato, 2013; Park et al., 2013), and the 
authors reported that single polarization SAR images limit 
the information describing land surface compared to full 
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polarimetric SAR images. However, a single polarization 
SAR image can cover a wider area than a full polarimetric 
SAR image (Ainsworth et al., 2009), making it suitable for 
assessing damage induced by large-scale natural disasters.

Single polarization SAR images have been extensively 
used for the assessment of damage caused by large-scale 
disasters (Yonezawa and Takeuchi, 2001; Matsuoka and 
Yamazaki, 2004; Matsuoka and Yamazaki, 2005; Arciniegas 
et al., 2007; Bovolo and Bruzzone, 2007; Brunner et al., 2010;  
Chini et al., 2012; Jung and Kim, 2016). Arciniegas et al. 
(2007) and Chini et al. (2012) utilized the complex coherence 
of the interferometric pair for damage assessment. Matsuoka 
and Yamazaki (2004), Matsuoka and Yamazaki (2005), and 
Yonezawa and Takeuchi (2001) proposed methods that used 
intensity changes and intensity correlation to detect damage. 
Jung and Kim (2016) also used intensity changes and textual 
features to assess damage. Brunners et al. (2010) detected 
the damaged areas using the similarity between a simulated 
image and an actual SAR image that was generated by using 
optical and SAR images. Most of these studies utilized 
a CD (Change Detection) method that incorporated a DI 
(Difference Image) made from data of only two dates (one 
pre-disaster, one post-disaster data), to detect a change in 
areas (Bovolo and Bruzzone, 2007). Although multitemporal 
SAR data provides more information about disasters (Bujor 
et al., 2004; Gamba et al., 2007), the conventional CD 

methods utilize only two dates, which limits the information 
that can be provided. 

In this paper, we propose a novel CD method using a 
similarity weight image that is extended to use data from 
three dates, comprising two pre-disaster SAR images and 
one post-disaster SAR image, for detecting a damaged 
area. The similarity weight image used in the proposed CD 
method is generated by a similarity weight derived from the 
neighborhood information of a pixel in the data of the three 
dates. Our experimental results confirmed that the similarity 
weight image reduces speckle noise and increases the 
mapping accuracy of damaged areas when compared to the 
DI used in the conventional CD method. For the experiment, 
we used three single polarization ALOS/PALSAR (Advanced 
Land Observing Satellite/Phased Array Type L-Band SAR) 
images on a subset of Miyagi prefecture, Japan, which was 
seriously damaged by a tsunami on March 11, 2011. This paper 
is organized as follows: In Section 2, the proposed method 
is described in detail; in Section 3, we describe the datasets, 
results, and discussion; conclusions are drawn in Section 4.

2. Methodology
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(a) (b)

Fig. 1. Concept of similarity weight: (a) conventional similarity weight and (b) transformed similarity weight (gray: 
neighborhood pixel; red, blue, and green: center pixel)
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are the pre-disaster time, and 
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 is the post-disaster time. 
Our objective is to produce a change-detection map, which 
represents changes that were induced by tsunamis, by using 
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). The proposed approach 
consists of two main steps: 1) a similarity weight image for 
CD; 2) a threshold selection process. The first step uses three 
SAR images to estimate a similarity weight by utilizing the 
similarity weight equation used in a NL-means (Non-Local 
means) algorithm. In the second step, threshold selection 
is applied to identify tsunami-induced damaged areas. The 
details of the methodology are described below. 

2.1 Similarity weight image for change detection

An NL-means algorithm is a denoising algorithm that 
reduces speckle noise. Denoising is achieved by averaging 
pixel values weighted by the similarity of neighborhoods of 
each pixel in an image (Tasdizen, 2009). The conventional 
similarity weight is a degree of the similarity between 
neighborhoods of each pixel in an image (Yousif and Ban, 
2014). Fig. 1(a) shows that the conventional similarity weight 
is estimated by calculating the similarity between two square 
neighborhoods of fixed size and centered at a pixel in an image. 
In other words, the similarity weight between two square 
neighborhoods of two pixels (a blue pixel and a red pixel) means 
how similar to a square neighborhoods of a pixel (a blue pixel) 
compared to the other pixels (green pixels) on basis of a square 
neighborhoods of a pixel (a red pixel). We apply the similarity 
weight to detect damaged areas induced by a tsunami. In this 
paper, the similarity weight is transformed into a degree of the 
similarity between image neighborhoods of each pixel in three 
images (Fig. 1(b)). The transformed similarity weight 

𝐼𝐼1 
 
𝐼𝐼2 
 
𝐼𝐼3 
 

𝑀𝑀 × 𝑁𝑁 
 

𝑡𝑡1, 𝑡𝑡2,

𝑡𝑡3

𝑡𝑡1

𝑡𝑡2

𝑡𝑡3

𝐼𝐼1, 𝐼𝐼2

𝐼𝐼3

pg
ijw

2

2

| |1 exp( )i jpq
ij

X X
w

Z h
−

=

2

2

| |
exp( )i j

j

X X
Z

h
−

=∑

iX

iI

[𝑖𝑖 ∈ (1, 2)]

jX

{𝑗𝑗 ∈ [ 𝑖𝑖 ≠ 𝑗𝑗, 𝑗𝑗 ∈ (1,2,3)]}

jI

h

iW

  in a 
(p, q) pixel is expressed as Eq. (1) and Z is the normalizing 
constant and defined as Eq. (2).
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 is a feature vector that consists of all 
values in the neighborhood of a pixel located in (p, q) of image 
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 is a 
feature vector that consists of all values in the neighborhood 
of a pixel located in (p, q) of image 

𝐼𝐼1 
 
𝐼𝐼2 
 
𝐼𝐼3 
 

𝑀𝑀 × 𝑁𝑁 
 

𝑡𝑡1, 𝑡𝑡2,

𝑡𝑡3

𝑡𝑡1

𝑡𝑡2

𝑡𝑡3

𝐼𝐼1, 𝐼𝐼2

𝐼𝐼3

pg
ijw

2

2

| |1 exp( )i jpq
ij

X X
w

Z h
−

=

2

2

| |
exp( )i j

j

X X
Z

h
−

=∑

iX

iI

[𝑖𝑖 ∈ (1, 2)]

jX

{𝑗𝑗 ∈ [ 𝑖𝑖 ≠ 𝑗𝑗, 𝑗𝑗 ∈ (1,2,3)]}

jI

h

iW

; and parameter h 
controls the decay of the exponential function. In Yousif 
and Ban (2014), the SAR ratio image, which applied an NL-
means algorithm, is logarithmically transformed in order to 
meet the basic assumption in an NL-means algorithm (i.e., 
additive noise). Accordingly, we also transformed SAR 
images logarithmically. 

In this paper, we define a similarity weight image (
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as a similarity weight between two pre-disaster images, and 
assume that the difference value in neighborhoods around a 
same-located pixel is small between two pre-disaster images. 
Accordingly, as there are many changes in a damaged 
area after a disaster, the similarity weight indicates a high 
value. In addition, a base image should be one of two pre-
disaster images, and two similarity weight images (
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 . The proposed method uses two 
similarity weight images (
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 ) to detect damage induced 
by tsunamis.

2.2 Threshold selection process

To identify tsunami-induced changes, it is necessary to 
set a threshold of the similarity weight for discriminating 
changed and unchanged classes. A CD map is computed 
by assigning pixels to one class (changed, 1; unchanged, 0) 
according to a threshold T. The CD map (

1W

2W

12
pgw

21
pgw

1W

2W

iM

iW

1 ,
0 ,

i
i

i

if W T
M

if W T
>

=  ≤

iM

T

1I

2I

1M

2M

1W

2W

1R

2R

1R

1I

3I

2R

) on a similarity 
weight image (

𝐼𝐼1 
 
𝐼𝐼2 
 
𝐼𝐼3 
 

𝑀𝑀 × 𝑁𝑁 
 

𝑡𝑡1, 𝑡𝑡2,

𝑡𝑡3

𝑡𝑡1

𝑡𝑡2

𝑡𝑡3

𝐼𝐼1, 𝐼𝐼2

𝐼𝐼3

pg
ijw

2

2

| |1 exp( )i jpq
ij

X X
w

Z h
−

=

2

2

| |
exp( )i j

j

X X
Z

h
−

=∑

iX

iI

[𝑖𝑖 ∈ (1, 2)]

jX

{𝑗𝑗 ∈ [ 𝑖𝑖 ≠ 𝑗𝑗, 𝑗𝑗 ∈ (1,2,3)]}

jI

h

iW ) is expressed as Eq. (3).

1W

2W

12
pgw

21
pgw

1W

2W

iM

iW

1 ,
0 ,

i
i

i

if W T
M

if W T
>

=  ≤

iM

T

1I

2I

1M

2M

1W

2W

1R

2R

1R

1I

3I

2R

                                                       (3)  

Here, 
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 is a binary image, and T is the threshold value 
supplied manually or automatically (Bovolo and Bruzzone, 
2008). In this paper, we automatically select the threshold 
value. We assume Gaussian distribution due to the histogram of 
the similarity. Thus, we apply the KI (Kittler and Illingworth) 
thresholding, which is a typical threshold method that assumes 
and applies the Gaussian distribution of the dataset, to the 
similarity weight image (Kittler and Illingworth, 1986). 

Before applying the threshold selection process, we mask 
the areas that do not meet the assumptions in the proposed 
method. The areas indicate regions where there are many 
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changes between two pre-disaster images and are mainly 
composed of vegetation areas which are sensitive to seasonal 
weather. In this case, we are unable to judge whether the 
changes are induced by tsunamis or seasonal effects, and 
so we consider them unreliable in terms of tsunami-induced 
changes when using intensity or amplitude SAR images. 
The process of generating a masking file consists of three 
steps. The first step generates the log ratio image of two 
pre-disaster images ( 1I , 2I 1M , 2M 1W , 2W

1R , 2R 1R 1I , 3I 2R     2I , 3I , 1r , 2r

1M , 2M
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). In the second step, the KI 
threshold method is applied to the log ratio image. Finally, 
a MRF (Markov Random Field), which is a powerful tool 
for modelling contextual information, is applied to reduce 
the effect of speckle noise. After masking, the threshold 

selection process is applied to the masked similarity weight 
images. Then, two CD maps (
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two similarity weight image (
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 ). The whole process is 
presented in Fig. 2. 

For comparison, two log ratio image ( 
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by using a log ratio operator which is  the most widely used 
operator to generate a DI. Next, masking is applied to each 
log ratio by using the masking file. Finally, two CD maps 
(
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comparison with 
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Fig. 2. Flowchart of the proposed change detection method

(a) (b) (c)
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because the effect of the submerged buildings might be 
small in intensity or amplitude in a post-disaster SAR 
image on April 07, 2011. The reference map contains 
168,543 unchanged pixels and 5,459 changed pixels; and is 
generated through three steps. The first step transforms the 
KML file into a shape file by using the ArcGIS program. 
In the second step, the reference map is generated from the 
shape file by using the ENVI (Exelis Visual Information 
Solutions) program. Finally, in order to improve the 
accuracy of the reference map, the reference map is 
registered to a SAR image through the ENVI program 
(Fig. 3(e)).

The datasets used in this paper consist of three images 
(Fig. 3): two ALOS/PALSAR images acquired before the 
tsunami on May 20, 2010, and November 20, 2010, as pre-
disaster images (Fig. 3(a) and (b)) and one ALOS/PALSAR 

3. Experimental Results

3.1 Study area and datasets 

The study site is Miyagi prefecture located on the 
Pacific coast of northern Japan. Miyagi prefecture was 
one of the areas most seriously damaged by the great 
tsunami on March 11, 2011.  Most of the houses collapsed 
or were submerged. The building damage map is shown 
in Fig. 3(d), which was produced by the GIS (Geographic 
Information System) Center for Environment and Disaster 
Mitigation, Niigata University (http://www.jsgi-map.org/
tsunami/). The building damage map is made up of four 
color types: red and pink are the collapsed buildings, 
yellow is the submerged buildings, purple is unknown, and 
green is undamaged buildings. We used only the collapsed 
buildings to evaluate the accuracy of the proposed method 

(d) (e)

Table 1. Acquisition information of datasets

* FBS: Fine Beam Single Polarization mode

Acquisition mode Acquisition date Polarization Incidence angle [˚]

FBS May 20, 2010 (pre-disaster) HH 38

FBS November 20, 2010 (pre-disaster) HH 38

FBS April 07, 2011 (post-disaster) HH 38

Fig. 3. ALOS/PALSAR amplitude images: (a) Pre-disaster (2010.05.20), (b) pre-disaster (2010.11.20), (c) post-disaster 
(2011.04.07), (d) building damage map, and (e) reference map
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image acquired after the tsunami on April 07, 2011, as a 
post-disaster image (Fig. 3(c)). All images were geocoded 
and accurately co-registered to each other by the SNAP 
(Sentinel Application Platform). The spatial resolution of 
all SAR images was 7m, and the size of all images was 
1500×1000 pixels. After co-registering, all SAR images 
were filtered by an enhanced Lee filter with a –5×5-sized 
window, which has proved effective in reducing speckle 
noise (Lopes et al., 1990). The acquisition information of 
the datasets used (acquisition date, polarization, incidence 
angle) is presented in Table 1. All images were taken on a 
descending orbit mode. 

3.2 Results and discussion

In this section, we present detailed experimental results 
studying the behavior of the CD algorithm with respect to 
parameter h , the neighborhood size, and threshold selection. 
We also present a quantitative analysis of the results. In the 
quantitative analysis, false alarms (i.e., unchanged pixels 
wrongly classified as changed), missed alarms (i.e., changed 
pixels wrongly classified as unchanged), detected changes 
(i.e., changed pixels correctly classified as changed), overall 
accuracy (i.e., false alarms and missed alarms), and a g-mean 

(Kubat et al., 1998) are used to evaluate an effectiveness 
of the proposed method. The g-mean is measured by the 
accuracy rate of both the damaged and undamaged areas. 
The details are described below. 

3.2.1 Interpretation of similarity weight image

A similarity weight image that was generated by using 
two pre-disaster images and one post-disaster image is 
used to detect damage induced by tsunamis through Eq. (1). 
Similarity values indicate the following: a low similarity 
weight means a base image is more similar to a post-disaster 
image than to the other pre-disaster image; a medium 
similarity weight indicates all three images are similar; 
and a high similarity weight means that the post-disaster 
image is very different than the two pre-disaster images. In 
Fig. 4(b), one can observe that the high similarity weights 
are mainly distributed near the shoreline where there are 
many damaged areas (Fig. 4(b), black rectangle), medium 
similarity weights are mainly distributed in areas away from 
the shoreline where there are many undamaged areas (Fig. 
4(b), dot-dashed white square), and low similarity weights 
are mainly distributed in vegetation areas (Fig. 4(b), dotted 
white square). 

Fig. 4. Similarity weight images versus h: (a) similarity weight image in h = 10×σn and (b) similarity weight image in h = 1 
(σn is a standard deviation in a neighborhood window) (balck rectangle: high similarity weight, dotted white square: low 

similarity weight, dot-dashed white square: medium similarity weight)

(a) (b)
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      (a)

     

(b)

                (c)

                                                                                           (d) 

Fig. 5. The effect of parameter h: (a) hetero-case 1, (b) 
hetero-case 2, (c) homo-case 1, and (d) homo-case 2 

(the first column is a patch of an image on May 20, 2010, 
the second on November 20, 2010, the third on April 07, 

2011, the fourth on similarity weight image in h = 10×σn, 
the fifth on similarity weight image in h = 1)

The similarity weight depends on the parameter h.  Buades 
et al. (2005), who developed an NL-means algorithm, 
proposed that the value of h can be determined by using 
h = 10×σn, which is subjective (Yousif and Ban, 2013). Fig. 
4(a) is the similarity weight image in which h is set to 10×σn. 
With this setting, small changed areas in all three images 
are considered as large changed areas (i.e., high similarity 
weight) in homogeneous regions (Fig. 5(c) and (d)). On the 
other hand, in heterogeneous areas, large changed areas 
are considered as small changed areas (i.e., low similarity 
weight) (Fig. 5(a) and (b)). In other words, undamaged areas 

can be assigned as damaged areas in a homogeneous area, 
whereas damaged areas are assigned as unchanged areas 
in a heterogeneous area (fourth column in Fig. 5). This 
phenomenon is a problem when detecting damaged areas. 
For this reason, we empirically set h to a constant value 1. 
Fig. 4(b) is a similarity weight in which h is set to 1. The fifth 
column in Fig. 5 shows that the aforementioned problems are 
reduced. 

3.2.2 Quantitative analysis of the results

In the first experiment, we analyzed the effect of masking 
in the similarity weight images. As mentioned in Section 
2.2, it is necessary to mask the areas where there are many 
changes between two pre-disaster images before applying 
the thresholding method. To explore the effect of masking, 
the histograms of the masked similarity weight image were 
compared with those of the unmasked image in Fig. 6. The 
Fig. 6 shows that a portion of low similarity in the masked 
histogram is eliminated from the unmasked histogram. The 
remaining pixels were further analyzed to identify changed 
or unchanged pixels. 

In the second experiment, we studied the similarity 
weight in terms of dependence on the neighborhood size of 
a pixel. When using a neighborhood window in SAR data, 
the neighborhood window size is influenced by the ENL 
(Equivalent Number of Looks) of the SAR data (Gong et 
al., 2012). A low ENL of the SAR data indicate a high noise 
level. In this case, a large neighborhood size is selected. In 
this paper, all ENL of the three SAR images are low, and we 

(a) (b)

Fig. 6. Histograms of the similarity weight images before and after masking: (a) unmasked histogram and (b) masked 
histogram (x-axis, similarity weight; y-axis, number of pixels)
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speculate that the large neighborhood size is more effective 
than the small neighborhood size. In Table 2 and 3, false 
alarms, missed alarms, detected changes, overall accuracy, 
and g-means are shown versus the neighborhood size. We 
confirmed that the large neighborhood size is generally more 
suitable than the small neighborhood size. The proposed 
approach achieved the best performance with a neighborhood 
size of 11 × 11 pixels in two CD maps.

In the third experiment, we assessed the effectiveness of 
the proposed method through the comparison of two CD 
maps (
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) that were made from each log ratio image 
(Fig. 7(b) and (c)). For accuracy, we used only collapsed 
buildings (Fig. 7(a)). Results are compared in Table 4, 

and the final CD maps are shown in Fig. 7.  As reported 
in Table 4, we confirmed that the proposed method was 
improved when compared to 
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 in all aspects (false 
alarms, missed alarms, detected changes, overall accuracy, 
and g-mean) for detecting damaged areas. The decreased 
number in false alarms means that the similarity weight 
image can reduce the negative effects of speckle noise when 
compared to the conventional DI. In Fig. 7(d) and (e), we can 
observe that the negative effects of speckle noise are shown 
to be reduced when compared to two CD maps made from 
the conventional DI. In terms of g-means, the similarity 
weight image was improved 20.4-26.4% compared to the 
conventional DI.

Table 2. False alarms, missed alarms, detected changes, overall accuracy, and g-means versus neighborhood size in 
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Table 3. False alarms, missed alarms, detected changes, overall accuracy, and g-means versus neighborhood size in 
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Table 4. Results achieved by the proposed method and the conventional method
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Finally, we analyze the results in more details in terms of 
false alarms and missed alarms. Missed alarms consist of 
two types: The first type is caused when some changed areas 
between two pre-disaster images are incorrectly regarded as 
unchanged (Fig. 8); the second type is actual missed alarms. 
In this case, if the accuracy of the masking file is improved, 
the first type will be reduced. In Fig. 8, the first column is a 
patch of an image on May 20, 2010, the second was acquired 
on November 20, 2010, the third on April 07, 2011, and the 

fourth is a building, which is the first type of false alarm in 
the similarity weight image.

False alarms consist of three types: The first type is actual 
changed areas that are unchanged areas in the reference map 
(e.g. new building, changed land cover) (second and third row 
in Fig. 9); the second type is submerged areas with significant 
debris (first row in Fig. 9); the third type is actual false alarms. 
This is illustrated in Fig. 9, which is made up of Google Earth 
images and amplitude images. In Fig. 9, the first column is a 

(a) (b) (c)

(d) (e)

Fig. 7. Tsunami-induced change detection maps: (a) Reference map in terms of collapsed buildings, 
(b) r1, (c) r2 , (d) M1, and (e) M2
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patch of an image on May 20, 2010, the second was acquired 
on November 20, 2010, the third on April 07, 2011, and the 
fourth is a building that is the first or second type of false 
alarm. The fifth is a Google Earth map on April 04, 2010, 
and the sixth is a Google Earth map on April 06, 2011. The 
first row is the second type, the second and third row are the 
first type.

 
 

 
4. Conclusion

Remote sensing using satellite data has been growing in 
importance due to the steadily increasing number of natural 
disasters. Among various sensors used in remote sensing, the 
SAR sensor has been widely used for detecting damaged areas 
due to its insensitivity to illumination and weather conditions. 
Most studies using SAR images for CD apply a CD method 

using a DI, which is generated from data consisting of two 
dates. However, the conventional CD method is limited in 
that it uses the limited information provided from only two 
dates in multitemporal images. 

In this paper, a novel CD method using a similarity weight 
image that is generated from three dates of SAR data has 
been presented for assessing changes induced by tsunamis. 
We confirmed the effectiveness of the similarity weight-
based method, using three single polarization SAR images 
consisting of two pre-disaster SAR images and one post-
disaster SAR image from Miyagi, Japan. We showed that the 
similarity weight-based method is effective for reducing the 
negative effect of noise when compared to the conventional 
CD method. Through a quantitative assessment of the 
results, we showed the usefulness of the proposed method for 
detecting damaged areas induced by tsunami. In future work, 
we plan to analyze the effect of parameter h when h is set to 
a different value considering various sites, and to analyze the 
distribution of the similarity weight image in more detail. In 
addition, we will extend a similarity image weight to apply to 
more than four images.
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