DOI QR코드

DOI QR Code

Performance Comparison of Structured Measurement Matrix for Block-based Compressive Sensing Schemes

구조화된 측정 행렬에 따른 블록 기반 압축 센싱 기법의 성능 비교

  • Ryu, Joong-seon (Department of Information and Communication Engineering, Hanbat National University) ;
  • Kim, Jin-soo (Department of Information and Communication Engineering, Hanbat National University)
  • Received : 2016.04.04
  • Accepted : 2016.04.11
  • Published : 2016.08.31

Abstract

Compressed sensing is a signal processing technique for efficiently acquiring and reconstructing in and under Nyquist rate representation. Generally, the measurement prediction usually works well with a small block while the quality of recovery is known to be better with a large block. In order to overcome this dilemma, conventional research works use a structural measurement matrix with which compressed sensing is done in a small block size but recovery is performed in a large block size. In this way, both prediction and recovery are made to be improved at same time. However, the conventional researches did not compare the performances of the structural measurement matrix, affected by the block size. In this paper, by expanding a structural measurement matrix of conventional works, their performances are compared with different block sizes. Experimental results show that a structural measurement matrix with $4{\times}4$ Hadamard transform matrix provides superior performance in block size 4.

압축 센싱은 샤논/나이퀴스트 표본화 정리를 만족하는 나이퀴스트 율 보다 더 적은 수의 표본화 주파수로 신호를 획득하더라도 그 신호가 성긴 신호라는 조건 하에 샘플링을 가능하게 하는 신호 처리 기술이다. 일반적으로 측정 예측방식은 작은 블록 크기에서 성능이 좋은 반면에 복원 이미지 품질은 큰 블록으로 복원하는 것이 좋다. 이러한 두 개의 상충하는 속성을 해결하기 위해 압축 센싱은 작은 블록에서 행해지고, 복원은 큰 블록에서 수행하게 되는 구조화된 측정 행렬을 사용하며, 이러한 방법으로 예측과 복원 모두 동시에 개선을 추구한다. 본 논문에서는 구조화된 측정 행렬을 확장함으로써 블록 크기에 따른 다양한 방식이 비교되어진다. 다양한 실험 결과를 통해 $4{\times}4$ 하다마드 행렬을 이용한 구조화된 측정 행렬이 블록 크기가 4의 크기에서 가장 좋은 성능을 보여주었다.

Keywords

References

  1. D. L. Donoho, "Compressed Sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, pp. 1289-1306, Apr. 2006. https://doi.org/10.1109/TIT.2006.871582
  2. L. Gan, "Block Compressed Sensing of Natural Images," Proceedings of the International Conference on Digital Signal Processing, Cardiff, UK, pp. 403-406, July. 2007.
  3. S. Mun and J. E. Fowler, "Block Compressed Sensing of Images Using Directional Transforms," Proceedings of IEEE International Conference on Image Processing, USA, pp. 3021-3024, 2009.
  4. J. Zhang, D. Zhao, F. Jiang "Spatially Directional Predictive Coding for Block-based Compressive Sensing of Natural Images," Proceedings of IEEE International Conference on Image Processing, pp. 1021-1025, Melbourne, Australia, Sep. 2013.
  5. S. Mun, J. E. Fowler "Dpcm for Quantized Block-Based Compressed Sensing of Images," Proceedings of the European Signal Processing Conference, pp. 1424-1428, Aug. 2012.
  6. C. Chen, E. W. Tramel, and J. E. Fowler, "Compressed Sensing Recovery of Images and Video Using Multihypothesis Predictions," Proceedings of the 45th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, pp. 1193-1198, 2011.
  7. K. Q. Dinh, H. J. Shim, B. Jeon, "Measurement Coding For Compressive Imaging Using A Structural Measurement Matrix," Proceeding of the 20th International Conference on Image Processing, Melbourne, Australia, pp. 15-18, Sep. 2013.
  8. B. Jeon, "Compressed Sensing and Image Processing Application," Proceedings of The Magazine of the The Institute of Electronics and Information Engineers, Vol. 41, No. 6, pp. 27-38, June. 2014.
  9. J. Ryu and J. Kim, "Performance Comparison of BCS-SPL Techniques Against a Variety of Restoring Block Sizes," Journal of the Korea Industrial Information System Society, Vol. 21, No. 3, pp.21-28, June 2016.
  10. J. Ryu and J. Kim, "An Effective Fast Algorithm of BCS-SPL Decoding Mechanism for Smart Imaging Devices," Journal of Korea Multimedia Society, Vol. 19, No. 2, pp. 200-208, Feb. 2016. https://doi.org/10.9717/kmms.2016.19.2.200