DOI QR코드

DOI QR Code

Optimal Control Scheme for SEIR Model in Viral Communications

Viral 통신에서의 SEIR모델을 위한 최적제어 기법

  • Radwan, Amr (Department of Information and Communications Engineering at Inje University)
  • Received : 2016.06.09
  • Accepted : 2016.06.28
  • Published : 2016.08.31

Abstract

The susceptible, exposed, infectious, and recovered model (SEIR) is used extensively in the field of epidemiology. On the other hand, dissemination information among users through internet grows exponentially. This information spreading can be modeled as an epidemic. In this paper, we derive the mathematical model of SEIR in viral communication from the view of optimal control theory. Overall the methods based on classical calculus, In order to solve the optimal control problem, proved to be more efficient and accurate. According to Pontryagin's minimum principle (PMP) the Hamiltonian function must be optimized by the control variables at all points along the solution trajectory. We present our method based on the PMP and forward backward algorithm. In this algorithm, one should integrate forward in time for the state equations then integrate backward in time for the adjoint equations resulting from the optimality conditions. The problem is mathematically analyzed and numerically solved as well.

최근 SNS (Social Networking Services)를 통한 사용자들 간 정보 확산이 폭발적으로 증가하고 있다. SEIR (Susceptible-Exposed-Infectious-Recovered model)모델은 전염병 예측에 널리 사용되는 수학적 모델로, 이러한 정보 확산은 SEIR를 이용하여 모델링 할 수 있다. 본 논문에서는 SEIR모델을 이용하여 최적 제어 이론의 관점에서 SNS의 정보 확산 모델을 도출하였다. 본 논문에서는 PMP (Pontryagin's Minimum Principle)에 기반한 forward-backward algorithm을 제안하였다. 이 알고리즘은 전방과 후방으로 가면서 state와 adjoint equation들을 통합하면서 동작한다. 수치해석을 통해 정보 내용의 impact value와 birth rate이 작으면 작을수록 더 많은 노드들이 해로운 정보를 필터링하는 것을 보였다.

Keywords

References

  1. R. Xu, H. Li, and C. Xing, "Research on Information Dissemination Model for Social Networking Services," IJCAS, vol. 2, no. 1, pp. 1-6, Feb. 2013.
  2. C. B. Belker, "The Paradigm of Viral Communication," Journal of Information Service and Use, vol. 22, no. 1, pp. 3-8, First Issue 2002. https://doi.org/10.3233/ISU-2002-22102
  3. S. Lenhart, and T. Workman, Optimal Control Applied to Biological Models, Chapman and Hall/CRC Mathematical and Computational Biology Series, 2007.
  4. D. Moualeu, M.. Weiser, R. Ehrig, and P. Deuflhard, "Optimal Control for a Tuberculosis model with Undetected Cases in Cameroon," Commun Nonlinear Sci Numer Simulat, vol. 20, no. 3, pp. 986-1003, Mar. 2015. https://doi.org/10.1016/j.cnsns.2014.06.037
  5. J. T. Beets, Practical Methods for Optimal Control using Nonlinear Programming, 2nd ed. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010.
  6. A. Radwan, "Dynamic Optimization of Active Queue Managment Routers to Improve Queue Stability," Journal of the Korea Multimedia Society, vol. 18, no. 11, pp. 1375-1382, Nov. 2015. https://doi.org/10.9717/kmms.2015.18.11.1375
  7. O. Von Stryk and R. Bulirsch, "Direct and Indirect Methods for Trajectory Optimization," Annals of Operations Research, vol. 37, no. 1, pp. 357-373, Dec. 1992. https://doi.org/10.1007/BF02071065
  8. C. Darby, W. Hager, and A. Rao, "Direct Trajectory Optimization Using a Variable Low-Order Adaptive Pseudospectral Method," Journal of Spacecraft and Rockets, vol. 48, no. 3, pp. 433-445, May 2011. https://doi.org/10.2514/1.52136
  9. R. M. Neilan and S. Lenhart, "An Introduction to Optimal Control with an Application in Disease Modeling," DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 75, pp. 67-81, 2010.