DOI QR코드

DOI QR Code

정상 I급 교합과 Full-CUSP II급 교합의 두개골 구조거동 비교 해석연구

Comparative Study on Structural Behaviors of Skull in Occlusions for Class I and Full-CUSP Class II

  • 이여경 (이화여자대학교 건축공학과) ;
  • 박재용 (이화여자대학교 건축공학과) ;
  • 김희선 (이화여자대학교 건축공학과)
  • 투고 : 2016.06.10
  • 심사 : 2016.08.04
  • 발행 : 2016.08.31

초록

최근 치의학 분야에서도 인체에 대한 구조적이고 역학적인 이해를 위하여 유한요소해석 기법이 널리 사용되고 있다. 따라서 본 연구에서는 CT 이미지를 기반으로 하는 유한요소모델링 기법을 제안하고, 실험결과와 비교하여 검증하였다. 또한 제안된 해석기법을 통해 교합 시뮬레이션을 구현하여 정상 I급 교합과 Full-CUSP II급 교합상태의 두개골 모델에 대하여 기하비선형구조해석을 수행하였다. 그 결과, 하악골이 같은 거리만큼 이동할 때 사람의 실제 교합력 범위에서는 두 모델의 교합력에 큰 차이가 없는 것으로 나타났다. 그러나 응력분포를 비교했을 때 정상 I급 교합모델은 치아 및 치조골 전반에 응력이 균등하게 발생하는 반면, Full-CUSP II급 교합모델의 경우 일부 구역에 응력집중 현상이 나타났다. 이는 치아의 부재 및 재배열로 인하여 교합면이 달라지면서 생긴 결과라고 분석된다.

Recently, finite element analysis technique has been widely used for structural and mechanical understandings of human body in the dentistry field. This research proposed an effective finite element modeling method based on CT images, and parametric studies were performed for the occlusal simulation. The analyses were performed considering linear material behaviors and nonlinear geometrical effect, and validated with the experimental results. In addition, the skull models with two different molar relations such as Class I and full-CUSP Class II were generated and the analyses were performed using the proposed analytical method. As results, the relationships between the mandibular movement and occlusal force of both two models showed similar tendency in human occlusal force. However, stress was evenly distributed from teeth to facial bone in the skull model with Class I, while stress concentration was appeared in the model with full-CUSP Class II due to the changes of occlusal surfaces of the model.

키워드

참고문헌

  1. Cho, Y.E., Park, E.J., Koak, J.Y., Kim, S.K., Heo, S.J., Park, J.M. (2014) Strain Gauge Analysis of Occlusal Forces on Implant Protheses at Various Occlusal Heights, Int. J. Oral & Maxillofac. Implant., 29(5), pp.1034-1041. https://doi.org/10.11607/jomi.3040
  2. Choy, K.C., Kim, K.H., Park, Y.C., Han, J.Y. (2001) An Experimental Study on the Stress Distribution in the Periodontal Ligament, Korean J. Orthod., 31, pp.15-24.
  3. De Oliveira, S.G., Seraidarian, P.I., Landre, J., Oliveira, D.D., Cavalcanti, B.N. (2006) Tooth Displacement due to Occlusal Contacts: a Three-Dimensional Finite Element Study, J. Oral Rehabil., 33, pp.874-880. https://doi.org/10.1111/j.1365-2842.2006.01670.x
  4. De Santis, R., Ambrosio, L., Nicolais, L. (2002) Mechanical Properties of Tooth Structures, Integr. Biomater. Sci., 21, pp.589-599.
  5. Ichim, I., Kuzmanovic, D.V., Love, R.M. (2006) A Finite Element Analysis of Ferrule Design on Restoration Resistance and Distridution of Stress within a Root, Int. Endod. J., 29, pp.1034-1041.
  6. Kasai, K., Takayama, Y., Yokoyama, A. (2012) Distribution of Occlusal Forces during Occlusal Adjustment of Dental Implant Prostheses: A Nonlinear Finite Element Analysis Condidering the Capacity for Displacement of Opposing Teeth and Implants, Int. J. Oral & Maxillofac. Implant., 27, pp.329-335.
  7. Keum, B.K. (2013) Experimental Study for Masticatory Strains on Teeth, Alveolar Bone, Facial Bone, and Cranial base Following Mesial Position of Maxillary Molars, Dep. Med. The Graduate School Seoul: Ewha Womans University
  8. Kim, H.S., Park, J.Y., Kim, N.E., Shin, Y.S., Park, J.M. (2012) Finite Element Modeling Technique for Predicting Mechanical behaviors on Mandible Bone during Mastication, J. Adv. Prosthodont., 4, pp.218-226. https://doi.org/10.4047/jap.2012.4.4.218
  9. Kim, H.S., Lee, Y.K., Park, J.Y. (2016) Development of FEA Procedures for Mechanical behaviors of Maxilla, Tteeth and Mandible, Int. J. Precis. & Manuf., 17, pp.785-792. https://doi.org/10.1007/s12541-016-0096-7
  10. Kwon, H.K., Yoo, J.H., Kwon, Y.S., Kim, B.I. (2006) Comparison of Bite Force with Dental Prescale and Unilateral Bite Force Recorder in Healthy Subjects, J. Korean Acad. Prosthodont., 44, pp.103-111.
  11. Le Reverend, B., Hartmann, C. (2014) Numerical Modeling of Human Mastication, A Simplistic View to Design Foods Adapted to Mastication Abilities, Physiology & Behav., 124, pp.61-64. https://doi.org/10.1016/j.physbeh.2013.10.012
  12. Lim, K.S. (2012) Comparison of the Strains according to the Change of Masticatory Situations in the Maxillary Teeth, Maxilla and Cranial Base using Strain Gauges, Department of Medicine The Graduate School Seoul: Ewha Womans University
  13. Minch, L. (2013) Material Properties of Periodontal Ligaments, Postepy Hig Med Dosw (online), 67, pp.1261-1264. https://doi.org/10.5604/17322693.1079820
  14. Park, J.Y., Kim, N.E., Kim, M.J., Kwon, J.H., Lee, Y.K., An, A.Y., Kim, H.S. (2013) The Unified 3D Finite Element Model of Skull, Teeth and Mandible for Simulating Masticatory Behaviors, Proceedings of 2013 Team Research Project for Female Undergraduate Engineering Students Supported by WISET and NRF.
  15. Seol, K.S. (2014) Predicting of Occlusal Stress Distribution on Maxillofacial Complex and Skull on Mastication by using Finite Element Analysis, Department of Dental Medicine The Graduate School Seoul: Ewha Womans University
  16. Toms, S.R., Eberhardt, A.W. (2003) A Nonlinear Finite Eelement Analysis of the Periodontal Ligament under Orthodontic Tooth Loading, Am. J. Orthodont. & Dentofac. Orthop., 123 pp.657-665. https://doi.org/10.1016/S0889-5406(03)00164-1
  17. Wierszycki, M., Kakol, W., Lodygowski, T. (2006) The Screw Loosening and Fatigue Analyses of Three Dimensional Dental Implant Model, Proc. 2006 Abaqus Users Conf., pp.389-403.