DOI QR코드

DOI QR Code

가스터빈 케이싱의 구조안전성 및 누설 평가

Evaluation of Structural Integrity and Leakage for a Gas Turbine Casing

  • 서희원 (안동대학교 기계설계공학과) ;
  • 함동우 (두산중공업 터빈/발전기 BG 가스터빈개발2팀) ;
  • 김경국 (두산중공업 터빈/발전기 BG 가스터빈개발2팀) ;
  • 한정삼 (안동대학교 기계설계공학과)
  • Seo, Hee Won (Dept. of Mechanical Design Engineering, Andong Nat'l Univ.) ;
  • Ham, Dong Woo (Gas Turbine Development Team, Doosan Heavy Industries & Construction Co. Ltd.) ;
  • Kim, Kyung Kook (Gas Turbine Development Team, Doosan Heavy Industries & Construction Co. Ltd.) ;
  • Han, Jeong Sam (Dept. of Mechanical Design Engineering, Andong Nat'l Univ.)
  • 투고 : 2016.06.22
  • 심사 : 2016.07.26
  • 발행 : 2016.08.31

초록

가스 터빈은 기동 및 정지 횟수가 많기 때문에 열피로나 취화 현상으로 인한 가스터빈 케이싱의 균열 또는 케이싱의 플랜지면에서 고온고압 가스의 누설이 발생할 가능성이 높다. 따라서 가스터빈 케이싱의 구조안전성 및 플랜지면에서의 누설평가는 반드시 수행되어야 하는 부분이다. 본 논문에서는 유한요소해석을 바탕으로 터빈 케이싱의 ASME B&PVC VIII-2 구조안전성 평가 및 접촉압력을 통한 누설 평가 그리고 볼트의 구조안전성 평가를 진행하였다. 또한 가스터빈 케이싱의 유한요소모델링 및 해석/평가 방법을 제안하여 가스터빈 개발에 활용할 수 있게 하였다.

Because typical gas turbine systems have frequent startup and shutdown operations, it is likely to cause cracks at the gas turbine casing and gas leakages at casing flanges due to thermal fatigue and embrittlement. Therefore, the evaluation of structural integrity and gas leakage at the gas turbine casings must be performed. In this paper, we have evaluated the structural integrity of the turbine casing and bolts under a normal operation in accordance with ASME B&PVC and evaluated the leakage at casing flanges by examination of contact pressure calculated using the finite element analysis. Finally, we propose a design flow including finite element modeling, the interpretation and evaluation methods for gas turbine casings. This may be utilized in the design and development of gas turbine casings.

키워드

참고문헌

  1. ANSYS (2016) ANSYS Mechanical APDL Theory Reference 17.0, SAS IP, Inc.
  2. ASME (2010) ASME Boiler and Pressure Vessel Code, Rules for Construction of Pressure Vessels, Section VIII, Division 2, American Society of Mechanical Engineers, New York.
  3. ASME (2010) ASME Boiler and Pressure Vessel Code, Rules for Construction of Pressure Vessels, Section II, Part D., American Society of Mechanical Engineers, New York.
  4. Baek, S.H. (2016) The Monthly Report on Major Electric Power Statistics, Korea Elect. Power Corp., 448(2).
  5. Cho, H.H. (2014) Gas Turbine Development and Promotion Strategy in Korea, J. KSME, 54(8), pp.30-36.
  6. Kang, M.S., Yun, W.N., Kim, J.S. (2009) Investigation of the Thermo-mechanical Crack Initiation of the Gas Turbine Casing Using Finite Element Analysis, Korean Soc. Power Sys. Eng., 13(5), pp.52-58.
  7. Kim, T.W. (2002) Analysis of Structural Design Criteria of Pressure Vessels Based on ASME SECTION VIII, Proceedings of the KSME Spring and Autumn Conference, pp.98-107.
  8. Laxminarayan, K., Dr. M.Venkatarama, R., Dr. Kumar. (2013) Contact Pressure Validation of Steam Turbine Casing for static Loading Condition, Int. J. Mod. Eng. Rese. 3(5), pp.2888-2893.
  9. Laxminarayan, K., Jayanth, H.S., M. Venkatarama, R. (2014) Design and analysis of High-Pressure Casing of a Steam Turbine, Procedia Mater. Sci., 5, pp.1745-1754. https://doi.org/10.1016/j.mspro.2014.07.364
  10. Laxminarayan, K., M. Venkatarama, R., Kumar. (2013) Analysis of Steam Turbine Casing for Static Loading Condition, IJME, 6(2), pp.139-144
  11. Lee, Y.J., Kim, J.M., Kim, H.M., Lee, D.H., Chung, C.K. (2014) Structural Integrity Evaluation of Reactor Pressure Vessel Bottom Head without Penetration Nozzles in Core Melting Accident, J. Comput. Struct. Eng. Inst. Korea, 27(3), pp.191-198. https://doi.org/10.7734/COSEIK.2014.27.3.191
  12. Son, S.Y., Shin, K.H., (1994) Study on the Clamping Force and the Friction Coefficient in a Bolt tightened up to the Plastic Range, J. Comput. Struct. Eng. Inst. Korea, 7(3), pp.133-141.
  13. Yoo, J.W. (2012) Technology Status and Prospects of High-efficiency Large Gas Turbine for Power Generation in Korea, J. Electrical World, 432, pp.47-53.