References
- J. J. Berman, Principles of Big Data, Morgan Kaufmann, 2013.
- K. Krishnan, Data Warehousing in the Age of Big Data, Morgan Kaufmann, 2013.
- B. Chun, S. Lee, "A Study on Big Data Processing Mechanism & Applicability", International Journal of Software Engineering and Its Applications, Vol. 8, No. 8, pp. 73-82, 2014.
- S. Ha, S. Lee, K. Lee, "Standardization Requirements Analysis on Big Data in Public Sector based on Potential Business Models", International Journal of Software Engineering and Its Applications, Vol. 8, No. 11, pp. 165-172, 2014.
- S. Jeon, B. Hong, J. Kwon, Y. Kwak, S. Song, "Redundant Data Removal Technique for Efficient Big Data Search Processing", International Journal of Software Engineering and Its Applications, Vol. 7, No. 4, pp. 427-436, 2014.
- M. Riondato, Sampling-based Randomized Algorithms for Big Data Analytics, PhD dissertation in the Department of Computer Science at Brown University, 2014.
- J. Lu, D. LiBias, "Correction in a Small Sample from Big Data", IEEE Transactions on Knowledge and Data Engineering, Vol. 25, No. 11, pp. 2658-2663, 2013. https://doi.org/10.1109/TKDE.2012.220
- A. T. Roper, S. W. Cunningham, A. L. Porter, T. W. Mason, F. A. Rossini, J. Banks, Forecasting and Management of Technology, John Wiley & Sons, 2011.
- D. Hunt, L. Nguyen, M. Rodgers, Patent Searching Tools & Techniques, Wiley, 2007.
- J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, Third Edition, Waltham, MA, Morgan Kaufmann, 2012.
- WIPSON, WIPS Corporation, http://www.wipson.com, 2016.
- USPTO, The United States Patent and Trademark Office, http://www.uspto.gov, 2016.
- KIPRIS, Korea Intellectual Property Rights Information Service, www.kipris.or.kr, 2016.
- I. Feinerer, A Text Mining Framework in R and Its Applications, Dissertation, Department of Statistics and Mathematics, Vienna University of Economics and Business Administration, 2008.
- I. Feinerer, K. Hornik, D. Meyer, "Text mining infrastructure in R", Journal of Statistical Software, Vol. 25, No. 5, pp. 1-54, 2008.
- I. Feinerer, K. Hornik, Package 'tm' Ver. 0.6, Text Mining Package, CRAN of R project, 2016.
- S. Jun, S. Park, D. Jang, "Technology Forecasting using Matrix Map and Patent Clustering", Industrial Management & Data Systems, Vol. 112, Iss. 5, pp. 786-807, 2012. https://doi.org/10.1108/02635571211232352
- B. L. Bowerman, R. T. O'Connell, A. B. Koehler, Forecasting, Time Series, and Regression, An Applied Approach, Independence, KY, Brooks/Cole, 2005.
- W. S. Cleveland, "LOWESS: A program for smoothing scatterplots by robust locally weighted regression", The American Statistician, Vol. 35, No. 1, pp. 54, 1981.
- D. Ruppert, M. P. Wand, "Multivariate locally weighted least squares regression", The annals of statistics, pp. 1346-1370, 1994.
- G. Guo, Y. Fu, C. R. Dyer, T. S. Huang, "Image-based human age estimation by manifold learning and locally adjusted robust regression", IEEE Transactions on Image Processing, Vol. 17, No. 7, pp. 1178-1188, 2008. https://doi.org/10.1109/TIP.2008.924280
- M. Akritas, Probability and Statistics with R for Engineers and Scientists, Boston, Pearson, 2016.
- J. Choi, S. Jun, "Bayesian Regression Modeling for Patent Keyword Analysis", Journal of The Korea Society of Computer and Information, Vol. 21 No. 1, pp. 125-129, 2016. https://doi.org/10.9708/jksci.2016.21.1.125
- S. Park, J. Kim, D. Jang, H. Lee, S. Jun, "Methodology of Technological Evolution for Three-dimensional Printing", Industrial Management & Data Systems, Vol. 116, No. 1, pp. 122-146, 2016. https://doi.org/10.1108/IMDS-05-2015-0206
- R Development Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org, 2016.
- J. Choi, S. Jun, "A Technology Analysis Model using Dynamic Time Warping", Journal of the Korea Society of Computer and Information, Vol. 20, No. 5, 113-120, 2015. https://doi.org/10.9708/jksci.2015.20.5.113
- S. Jun, S. Park, D. Jang, "Technology Forecasting using Matrix Map and Patent Clustering", Industrial Management & Data Systems, Vol. 112, Iss. 5, pp. 786-807, 2012. https://doi.org/10.1108/02635571211232352
- S. Lee, S. Jun, "Key IPC Codes Extraction Using Classification and Regression Tree Structure", Advances in Intelligent Systems and Computing, Vol. 271, pp 101-109, 2014. https://doi.org/10.1007/978-3-319-05527-5_11