DOI QR코드

DOI QR Code

Antimicrobial activity of epigallocatechin gallate from green tea (Camellia sinensis) on pathogenic Salmonella Enteritidis in braised quail eggs

메추리알 장조림에서 녹차 Epigallocatechin gallate (EGCG)의 Salmonella Enteritidis에 대한 저장 온도에 따른 항미생물 활성

  • Kim, Kwang-Yeop (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Kim, Young-Ji (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Kim, Hong-Seok (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Song, Kwang-Young (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Kim, Dong-Hyeon (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Lee, Mi-Young (Devision of Nutrition Safety Policy, Ministry of Food and Drug Safety) ;
  • Kim, Eui-Su (Korea Food Industry Association) ;
  • Jeong, Heon-Sang (Department of Food Science and Technology, Chungbuk National University) ;
  • Seo, Kun-Ho (Center for One Health, College of Veterinary Medicine, Konkuk University)
  • 김광엽 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 김영지 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 김홍석 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 송광영 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 김동현 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 이미영 (식품의약품안전처 식품영양안전국 영양안전정책과) ;
  • 김의수 (한국식품산업협회) ;
  • 정헌상 (충북대학교 식품공학과) ;
  • 서건호 (건국대학교 수의과대학 식품안전건강연구소)
  • Received : 2016.05.10
  • Accepted : 2016.06.24
  • Published : 2016.08.31

Abstract

The inhibitory effect of epigallocatechin gallate (EGCG), one of the antioxidants in green tea (Camellia sinensis), against Salmonella Enteritidis was evaluated in commercial braised quail eggs at two temperatures (4 and $25^{\circ}C$). Although S. Enteritidis was dose-dependently suppressed by EGCG in pure culture at $25^{\circ}C$, it was not inhibited in the sauce or eggs at this temperature. At low temperature ($4^{\circ}C$), S. Enteritidis was inhibited in both the sauce and eggs by $400{\mu}g/mL$ EGCG. Thus, EGCG at an appropriate concentration could be a useful food additive for inhibiting S. Enteritidis in braised quail eggs at low temperatures.

천연 녹차추출물인 epigallocatechin gallate (EGCG)의 메추리알 장조림에서 천연식품첨가제로서의 적용 가능성을 탐색하고자 S. Enteritidis에 대한 항미생물 활성을 냉장온도($4^{\circ}C$)와 일반실내온도($25^{\circ}C$)에서 평가하였다. 순수배양액에서의 실험결과 첨가된 EGCG의 농도($200-800{\mu}g/mL$)에 따라 $4^{\circ}C$에서 5일에서 16일 사이에서 그리고 $25^{\circ}C$에서 1일부터 6일 사이에서 S. Enteritidis균이 검출한계 이하로 억제되는 것이 관찰되었다. 이와 대조적으로 간장소스에서의 실험에서는 $25^{\circ}C$에서 첨가된 EGCG의 농도와 관계없이 S. Enteritidis균이 억제되지 않았으며, $4^{\circ}C$에서는 $400{\mu}g/mL$ 이상의 농도일 때 16일에 S. Enteritidis균이 검출한계 이하로 억제되는 것이 관찰되었다. 메추리알 장조림의 경우, $25^{\circ}C$에서 간장소스의 결과와 동일하게 어떠한 EGCG의 항미생물 활성이 나타나지 않았지만, $4^{\circ}C$에서 $400{\mu}g/mL$의 EGCG 농도 첨가 시 16일에 S. Enteritidis 균이 검출한계 이하로 억제되는 것이 확인되었다. 따라서, 메추리알 장조림 완제품에서 EGCG는 $4^{\circ}C$ 이하의 저온유통체계(cold chain system)하에서 S. Enteritidis과 같은 식중독세균을 제어할 수 있는 적합한 천연 식품첨가제로서 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Ko YM, Hong SH, Park GC, Na YJ, Moon JS, Yoon KS. Effect of fat content and storage temperature on the growth and survival kinetics of pathogenic microorganisms in milk and ready to eat (RTE) quail eggs. Korean J. Food Cook. Sci. 30: 603-612 (2014) https://doi.org/10.9724/kfcs.2014.30.5.603
  2. Ministry of Agriculture, Food and Rural Affairs. MAFRA statistics. Available from: http://lib.mafra.go.kr. Accessed Sep. 15, 2015.
  3. Amiali M, Ngadi MO, Smith PJ, Raghavan GSV. Inactivation of Escherichia coli O157: H7 and Salmonella enteritidis in liquid egg white using pulsed electric field. J. Food Sci. 71: M88-M94 (2006) https://doi.org/10.1111/j.1365-2621.2006.tb15637.x
  4. Song YJ, Cho YS, Oh KH. Antibacterial activity against Salmonella enteritidis JK-15 and LPS changes caused by rose flower extracts. Korean J. Microbiol. 45: 318-323 (2009)
  5. Ministry of Food and Drug Safety. Korean Food Standards Codex. Available from: http://www.foodsafetykorea.go.kr/foodcode/menu_01_01.jsp#. Accessed Dec. 23, 2015.
  6. Rustia AS, Azanza PV. Heat resistance characteristics of Salmonella enteritidis in liquid quail egg. Food Sci. Technol. Res. 11: 151-156 (2005) https://doi.org/10.3136/fstr.11.151
  7. Jeong EJ, Park LY, Park HJ, Lee SH. Antibacterial effect of chitosan and grape seeds extracts Staphylococcus aureus and Escherichia coli. J. Chitin Chitosan 16: 27-32 (2011)
  8. Jung KH. Research directions for food additives safety. J. Fd. Hyg. Safety 24: 398-407 (2009)
  9. Hamilton-Miller JMT. Antimicrobial properties of tea (Camellia sinensis L.). Antimicrob. Agents Ch. 39: 2375-2377 (1995) https://doi.org/10.1128/AAC.39.11.2375
  10. Perumalla AVS, Hettiarachchy NS. Green tea and grape seed extracts-Potential applications in food safety and quality. Food Res. Int. 44: 827-839 (2011) https://doi.org/10.1016/j.foodres.2011.01.022
  11. Kim DW, Kim JH, Kang GH, Kang HK, Park SB, Park JH, Bang HT, Kim MJ, Na JC, Chae HS, Choi HC, Suh OS, Kim SH, Kang CW. Studies for antibiotic free chicken production using water extracts from Artemisia capillaris and Camellia sinensis. Korean J. Food Sci. An. 30: 975-988 (2010) https://doi.org/10.5851/kosfa.2010.30.6.975
  12. EPA. Ultraviolet disinfection guidance manual for the final long term 2 enhanced surface water treatment rule. Environmental Protection Agency, Washington D.C., USA (2006)
  13. Schraft H, Watterworth LA. Enumeration of heterotrophs, fecal coliforms and Escherichia coli in water: Comparison of $3M^{TM}$ PetrifilmTM plates with standard plating procedures. J. Microbiol. Meth. 60: 335-342 (2005) https://doi.org/10.1016/j.mimet.2004.10.008
  14. Kim S, Ruengwilysup C, Fung DYC. Antibacterial effect of water-soluble tea extracts on foodborne pathogens in laboratory medium and in a food model. J. Food Protect. 11: 2608-2612 (2004)
  15. Ulrih NP, Ota A, Sentjurc M, Kure S, Abram V. Flavonoids and cell membrane fluidity. Food Chem. 121: 78-84 (2010) https://doi.org/10.1016/j.foodchem.2009.12.006
  16. Choi HK, Oh KH. Cellular responses of Salmonella typhimurium exposed to green tea polyphenols. Korean J. Microbiol. 48: 87-92 (2012) https://doi.org/10.7845/kjm.2012.48.2.087
  17. Galvez A, Abriouel H, Lpez RL, Omar NB. Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol. 120: 51-70 (2007) https://doi.org/10.1016/j.ijfoodmicro.2007.06.001
  18. Leistner L. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 55: 181-186 (2000) https://doi.org/10.1016/S0168-1605(00)00161-6
  19. Brown MR, Collier PJ, Gilbert P. Influence of growth rate on susceptibility to antimicrobial agents: Modification of the cell envelope and batch and continuous culture studies. Antimicrob. Agents Ch. 34: 1623-1628 (1990) https://doi.org/10.1128/AAC.34.9.1623
  20. Gibson AM, Bratchell N, Roberts TA. Predicting microbial growth: Growth responses of salmonellae in a laboratory medium as affected by pH, sodium chloride and storage temperature. Int. J. Food Microbiol. 6: 155-178 (1988) https://doi.org/10.1016/0168-1605(88)90051-7
  21. Shelef LA. Antimicrobial effects of spices. J. Food Safety 6: 29-44 (1983)
  22. Kim YD, Kim KM, Hur CK, Kim ES, Cho IK, Kim KJ. Antimicrobial activity of garlic extracts according to diferent cooking methods. Korean J. Food Pres. 11: 400-404 (2004)
  23. Theivendran S, Hettiarachchy SH, Johnson MG. Inhibition of Listeria monocytogenes by nisin combined with grape seed extract or green tea extract in soy protein film coated on turkey frankfurters. J. Food Sci. 71: M39-M44 (2006) https://doi.org/10.1111/j.1365-2621.2006.tb08905.x

Cited by

  1. Antioxidant and Antimicrobial Activities of (-)-Epigallocatechin-3-gallate (EGCG) and its Potential to Preserve the Quality and Safety of Foods vol.17, pp.3, 2018, https://doi.org/10.1111/1541-4337.12346