DOI QR코드

DOI QR Code

Isolation and identification of a tricin 4"-O-(threo-β-guaiacylglyceryl) ether producing microorganism from germinated rice

발아 벼로부터 tricin 4"-O-(threo-β-guaiacylglyceryl) ether 생성균주의 분리 및 동정

  • Yoon, Nara (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Jang, Gwi Yeong (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Lee, Yoon Jeong (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Li, Meishan (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Kim, Min Young (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Kim, Hyun Young (Division of Rice and Winter Cereal Crop, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Junsoo (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Jeong, Heon Sang (Department of Food Science and Biotechnology, Chungbuk National University)
  • 윤나라 (충북대학교 식품생명공학과) ;
  • 장귀영 (충북대학교 식품생명공학과) ;
  • 이윤정 (충북대학교 식품생명공학과) ;
  • ;
  • 김민영 (충북대학교 식품생명공학과) ;
  • 김현영 (농촌진흥청 국립식량과학원 작물기초기반과) ;
  • 이준수 (충북대학교 식품생명공학과) ;
  • 정헌상 (충북대학교 식품생명공학과)
  • Received : 2016.05.03
  • Accepted : 2016.05.30
  • Published : 2016.08.31

Abstract

This study was conducted to isolate and identify a microorganism that increases tricin-O-(threo-${\beta}$-guaiacylglyceryl) ether (TTGE) content in the hulls of rice (Oryza sativa L.). Bacteria from germinated rice were isolated by enrichment cultivation using yeast mold, luria bertani, potato dextrose and mannitol egg york polymyxin broths. The highest increase in TTGE content ($339.30{\mu}g/g$) was achieved by a microorganism isolated by PDA enrichment cultivation. On the basis of 16S RNA sequence homology and phylogenetic analysis, the isolated bacterium was identified to have 100% similarity with Burkholderia vietnamiensis. The isolated bacteria were short rods, negative for the Gram stain, and positive for the catalase test. The highest TTGE level was $435.86{\mu}g/g$ in 72-h fermented samples, representing a 2.5x increase compared with the control ($175.65{\mu}g/g$). In conclusion, the bacterium isolated from germinated rice extract was Burkholderia vietnamiensis, and the optimum fermentation period to maximize TTGE levels was 72 h. These findings might help in developing functional materials using rice hulls, a waste product of rice milling.

본 연구는 왕겨에서 tricin 4'-O-(threo-${\beta}$-guaiacylglyceryl) ether(TTGE)를 생성시키는 균주를 분리와 동정하기 위하여 실시하였다. 발아 벼 추출물을 MYP, PDA, YM 및 LB 배지에 배양하고 각 배지에서 분리한 균을 왕겨에 접종해 TTGE 생성량을 측정한 결과 PDA 배지에서 자란 균에 의한 TTGE의 생성량($339.30{\mu}g/g$)이 가장 많았다. 분리한 균을 동정한 결과 Burkholderia vietnamiensis로 확인하였으며, 형태학적 및 생물학적 특성을 살펴본 결과 catalase 활성을 갖는 short rod 형태의 Gram 세균인 것으로 확인해 기존 Burkholderia 속의 특성과 일치하였다. 또한 분리한 세균을 살균한 왕겨에 접종하여 배양시킨 결과 배양기간에 따라 TTGE의 함량은 증가하였으며, 72시간 동안 배양에서 $435.86{\mu}g/g$로 가장 많은 증가를 나타내었다. 이러한 결과는 폐기되는 왕겨를 활용함으로써 왕겨의 함유된 TTGE의 함량을 증대시켜 기능소재로 사용할 수 있는 기초 자료가 될 것으로 판단된다.

Keywords

References

  1. Lee YJ, Jung WK, Sung YJ. Evaluation of fiberization of rice hull by autohydrolysis conditons. CNU J. Agric. Sci. 38: 95-100 (2011)
  2. Park JH, Jin JH, Kim HJ, Park HR, Lee SC. Effect of far-infrared irradiation on the antioxidant activity of extracts from rice hulls. J. Korean Soc. Food Sci. Nutr. 34: 131-134 (2005) https://doi.org/10.3746/jkfn.2005.34.1.131
  3. Park SJ, Kim MH, Shin HM. Chemical compositions and thermal characteristics of rice husk and rice husk ash in Korea. J. Biosystems Eng. 30: 235-241 (2005) https://doi.org/10.5307/JBE.2005.30.4.235
  4. Oh SW, Kang CH. Studies on the physical properties of molded packaging material using rice-straw pulp. J. Korean Wood Sci. Technol. 27: 79-87 (1999)
  5. No SY. Effective utilization methods of rice husk. J. Biosystems Eng. 23: 507-518 (1998)
  6. Ramarathnam N, Osawa T, Namiki M, Kawakishi S. Chemical studies on novel rice hull antioxidants. 2. Identification of isovitexin, a C-glycosyl flavonoid. J. Agr. Food Chem. 37: 316-318 (1989) https://doi.org/10.1021/jf00086a009
  7. Rho YD, Beak NI, Lee MH. Separation and idetification of natural herbicidal substance from rice hull. Weed Turf. Sci. 21: 49-57 (2001)
  8. Jeong RH, Lee DY, Cho JG, Lee SM, Kang HC, Seo WD, Kang HW, Kim JY, Baek NI. A new flavonolignan from the aerial parts of Oryza sativa L. inhibits nitric oxide production in raw 264.7 macrophage cells. J. Korean Soc. Appl. Bi. 54: 865-870 (2011) https://doi.org/10.1007/BF03253174
  9. Jiao J, Zhang Y, Liu C, Liu J, Wu X, Zhang Y. Separation and purification of tricin from an antioxidant product derived from bamboo leaves. J. Agr. Food Chem. 55: 10086-10092 (2007) https://doi.org/10.1021/jf0716533
  10. Mohanlal S, Parvathy R, Shalini V, Helen A, Jayalekshmy A. Isolation, characterization and quantification of tricin and flavonolignans in the medicinal rice Njavara (Oryza sativa L.), as compared to staple varieties. Plant Food. Hum. Nutr. 66: 91-96 (2007)
  11. Jung YS, Kim DH, Hwang JY, Yun NY, Lee YH, Han SB, Hwang BY, Lee MS, Jeong HS, Hong JH. Anti-inflammatory effect of tricin 4'-O-(threo-${\beta}$-guaiacylglyceryl) ether, a novel flavonolignan compound isolated from Njavara on in raw 264.7 cells and in ear mice edema. Toxicol. Appl. Pharm. 277: 67-76 (2014) https://doi.org/10.1016/j.taap.2014.03.001
  12. Yoon NR, Lee SH, Jang GW, Lee YJ, Li M, Kim MY, Lee JS, Jeong HS. Optimum extraction of tricin and tricin 4'-O-(threo-${\beta}$-guaiacylglyceryl) ether (TTGE) from rice hull (Oryza sativa L.). J. Korean Soc. Food Sci. Nutr. 44: 1923-1926 (2015) https://doi.org/10.3746/jkfn.2015.44.12.1923
  13. Vial L, Groleau MC, Dekimpe V, Dziel . Burkholderia diversity and versatility: An inventory of the extracellular products. J. Microbiol. Biotech. 17: 1407-1429 (2007)
  14. Wopperer J, Cardona ST, Huber B, Jacobi CA, Valvano MA, Eberl L. A quorum-quenching approach to investigate the conservation of quorum-sensing-regulated Functions within the Burkholderia cepacia complex. Appl. Environ. Microb. 72: 1579-1587 (2006) https://doi.org/10.1128/AEM.72.2.1579-1587.2006
  15. Kim MY, Lee SH, Jang GY, Park HJ, Li M, Kim SJ, Lee YR, Noh YH, Lee JS, Jeong HS. Effects of high hydrostatic pressure treatment on the enhancement of functional components of germinated rough rice (Oryza sativa L.). Food Chem. 166: 86-92 (2015) https://doi.org/10.1016/j.foodchem.2014.05.150
  16. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The clustal_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882 (1997) https://doi.org/10.1093/nar/25.24.4876
  17. Tamura K, Dudley J, Nei M, Kumar S. Mega4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599 (2007) https://doi.org/10.1093/molbev/msm092
  18. Wheater DM. The characteristics of Lactobacillus acidophilus and Lactobacillus bulgaricus. Microbiology 12: 123-132 (1955)
  19. Whittenbury R. Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. Microbiology 35: 13-26 (1964)
  20. Fowler ZL, Gikandi WW, Koffas MAG. Increased malonyl coenzyme a biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl. Environ. Microb. 75: 5831-5839 (2009) https://doi.org/10.1128/AEM.00270-09
  21. Leonard E, Chemler J, Lim KH, Koffas MAG. Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives in Escherichia coli. Appl. Microbiol Biot. 70: 85-91 (2006) https://doi.org/10.1007/s00253-005-0059-x
  22. Leonard E, Yan Y, Koffas MAG. Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metab. Eng. 8: 172-181 (2006) https://doi.org/10.1016/j.ymben.2005.11.001
  23. Leonard E, Lim KH, Saw PN, Koffas MAG. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl. Environ. Microb. 73: 3877-3886 (2007) https://doi.org/10.1128/AEM.00200-07
  24. Santos CNS, Koffas M, Stephanopoulos G. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab. Eng. 13: 392-400 (2011) https://doi.org/10.1016/j.ymben.2011.02.002
  25. Trantas E, Panopoulos N, Ververidis F. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab. Eng. 11: 355-366 (2009) https://doi.org/10.1016/j.ymben.2009.07.004