DOI QR코드

DOI QR Code

Modulation of the inflammatory process and interaction of THP-1 monocytes with intestinal epithelial cells by glasswort (Salicornia herbacea L.) extracts

인간 단핵구 THP-1의 염증반응 및 장관상피세포와의 상호작용에 미치는 퉁퉁마디 추출물 분획의 영향

  • Choi, Yoo Mi (Division of Applied Food System, College of Natural Science, Seoul Women's University) ;
  • Kang, Smee (Division of Applied Food System, College of Natural Science, Seoul Women's University) ;
  • Hong, Jungil (Division of Applied Food System, College of Natural Science, Seoul Women's University)
  • 최유미 (서울여자대학교 자연과학대학 식품응용시스템학부) ;
  • 강스미 (서울여자대학교 자연과학대학 식품응용시스템학부) ;
  • 홍정일 (서울여자대학교 자연과학대학 식품응용시스템학부)
  • Received : 2016.04.11
  • Accepted : 2016.06.02
  • Published : 2016.08.31

Abstract

The glasswort is an edible halophyte demonstrating various physiological effects including anti-inflammatory activity. In the present study, the effects of glasswort extracts on inflammatory events and interactions of THP-1 monocytes with intestinal epithelial cells were investigated. Five solvent fractions, including the ethylether fraction (Fr.E), were prepared from a 70% methanol extract of glasswort. THP-1 monocytes underwent differentiation by phorbol 12-myristate 13-acetate treatment and were then activated by lipopolysaccharide (LPS), which induced cyclooxygenase (COX)-2 expression. None of the glasswort fractions tested alone induced COX-2 in differentiated THP-1 cells. Fr.E, however, enhanced LPS-induced COX-2 expression in differentiated THP-1 cells. Culture media of THP-1 cells treated with each fraction stimulated the growth of normal intestinal INT-407 cells more prominently than that of HT-29 colon cancer cells. COX-2 expression in HT-29 cells was inhibited when the cells were exposed to the THP-1 culture medium treated with Fr.E. Thus, glasswort could modulate the interaction between immune cells and intestinal cells.

본 연구에서는 퉁퉁마디 추출물의 용매 분획을 통해 얻은 Fr.H, Fr.E, Fr.EA, Fr.B, 및 Fr.W, 분획의 인간 단핵구 THP-1 세포에 대한 면역조절 활성과 정상 장관계 세포 및 장관계 암세포를 이용하여 면역세포와 장관상피 세포의 상호작용에 미치는 영향을 조사하였다. THP-1 세포는 PMA에 의해 분화가 진행되었으며 분화된 THP-1 세포는 LPS에 의해 활성화되어 COX-2 단백질 발현이 유도 되었다. 퉁퉁마디 분획은 분화된 THP-1 세포에서 COX-2, iNOS, 및 $cPLA_2$ 발현에는 영향을 미치지 않았으나, 분획 중 Fr.E는 LPS에 의해 유도된 COX-2의 발현을 유의적으로 증가시켰다. 분화된 THP-1에서 퉁퉁마디 분획을 처리하여 얻은 배양액은 INT-407 정상 장관계 세포의 성장을 촉진한 반면, HT-29 대장암 세포에는 영향을 미치지 않거나 성장 억제 활성을 나타내었다. THP-1에 LPS를 처리한 배양액은 HT-29 세포의 COX-2 발현을 유도하였으며 이러한 LPS의 효과는 Fr.E의 처리에 의해 억제되었다. 본 연구에서는 면역세포와 장관계 세포 간의 상호작용에 미치는 퉁퉁마디 분획의 영향을 조사하여 이를 통한 면역조절 활성을 나타낼 수 있음을 보였으며, 면역조절 기능성 소재로서의 퉁퉁마디의 이용성 확대를 위한 기본 정보를 제공하고자 하였다.

Keywords

References

  1. Lee YS, Lee HS, Shin KH, Kim BK, Lee SH. Constituents of the halophyte Salicornia herbacea. Arch. Pharm. Res. 27: 1034-1036 (2004) https://doi.org/10.1007/BF02975427
  2. Kim JY, Cho JY, Ma YK, Park KY, Lee SH, Ham KS, Lee HJ, Park KH, Moon JH. Dicaffeoylquinic acid derivatives and flavonoid glucosides from glasswort (Salicornia herbacea L.) and their antioxidative activity. Food Chem. 125: 55-62 (2011) https://doi.org/10.1016/j.foodchem.2010.08.035
  3. Min JG, Lee DS, Kim TJ, Park JH, Cho TY, Park DI. Chemical composition of Salicornia herbacea L. J. Food Sci. Nutr. 7: 105-107 (2002)
  4. Lee CH, Kim IH, Kim YE, Oh SW, Lee HJ. Determination of betaine from Saliconia herbacea L. J. Korean Soc. Food Sci. Nutr. 33: 1584-1587 (2004) https://doi.org/10.3746/jkfn.2004.33.9.1584
  5. Kim YA, Kong CS, Um SY, Yea SS, Seo Y. Evaluation of Salicornia herbacea as a potential antioxidant and anti-inflammatory agent. J. Med. Food 12: 661-668 (2009) https://doi.org/10.1089/jmf.2008.1072
  6. Kong CS, Kim JA, Qian ZJ, Kim YA, Lee JI, Kim SK, Nam TJ, Seo YW. Protective effect of isorhamnetin 3-O-${\beta}$-D-glucopyranoside from Salicornia herbacea against oxidation-induced cell damage. Food Chem. Toxicol. 47: 1914-1920 (2009) https://doi.org/10.1016/j.fct.2009.05.002
  7. Kim YA, Kong CS, Lee JI, Kim HJ, Park HY, Lee HS, Lee CH, Seo YG. Evaluation of novel antioxidant triterpenoid saponins from the halophyte Salicornia herbacea. Bioorg. Med. Chem. Lett. 22: 4318-4322 (2012) https://doi.org/10.1016/j.bmcl.2012.05.017
  8. Hwang YP, Yun HJ, Choi JH, Chun HK, Chung YC, Kim SK, Kim BH, Kwon KI, Jeong TC, Lee KY, Jeong HG. 3-Caffeoyl, 4-dihydrocaffeoylquinic acid from Salicornia herbacea inhibits tumor cell invasion by regulating protein kinase C-${\delta}$-dependent matrix metalloproteinase-9 expression. Toxicol. Lett. 198: 200-209 (2010) https://doi.org/10.1016/j.toxlet.2010.06.018
  9. Jung BM, Park JA, Bae SJ. Growth inhibitory and quinone reductase induction activities of Salicornia herbacea L. fractions on human cancer cell lines in vitro. J. Korean Soc. Food Sci. Nutr. 37: 148-153 (2008) https://doi.org/10.3746/jkfn.2008.37.2.148
  10. Sung JH, Park SH, Seo DH, Lee JH, Hong SW, Hong SS. Antioxidative and skin-whitening effect of an aqueous extract of Salicornia herbacea. Biosci. Biotechnol. Biochem. 73: 552-556 (2009) https://doi.org/10.1271/bbb.80601
  11. Kong CS, Lee JI, Kim YA, Kim JA, Bak SS, Hong JW, Park HY, Yea SS, Seo YW. Evaluation on anti-adipogenic activity of flavonoid glucopyranosides from Salicornia herbacea. Process Biochem. 47: 1073-1078 (2012) https://doi.org/10.1016/j.procbio.2012.03.011
  12. Hamminga EA, Van der Lely AJ, Neumann HA, Thio HB. Chronic inflammation in psoriasis and obesity: Implications for therapy. Med. Hypotheses 67: 768-773 (2006) https://doi.org/10.1016/j.mehy.2005.11.050
  13. Mairi M, Georgina L, Emad M. Inflammation and cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am. J. Physiol.-Gastr. L. 286: 515-520 (2004)
  14. Ernest, Choy, Gabriel S, Panayi. Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med. 344: 907-916 (2001) https://doi.org/10.1056/NEJM200103223441207
  15. Steven H. Itzkowitz, Xianyang Y. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: The role of inflammation. Am. J. Physiol.-Gastr. L. 287: 7-17 (2004)
  16. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-${\kappa}$B pathway in the treatment of inflammation and cancer. J. Clin. Invest. 107: 135-142 (2001) https://doi.org/10.1172/JCI11914
  17. Thomas T, Giovanni M. Immunity, inflammation, and allergy in the gut. Science 307: 1920-1925 (2005) https://doi.org/10.1126/science.1106442
  18. Kiyono H, Kweon MN, Hiroi T, Takahashi I. The mucosal immune system: From specialized immune defense to inflammation and allergy. Acta Odontol. Scand. 59: 145-153 (2001) https://doi.org/10.1080/000163501750266738
  19. Lin W, Michael K. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Invest. 117: 1175-1183 (2007) https://doi.org/10.1172/JCI31537
  20. John C, Jeffrey W. Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis. Cell 124: 263-266 (2006) https://doi.org/10.1016/j.cell.2006.01.007
  21. Ahn CB, Je JY. Anti-inflammatory activity of the oriental herb medicine, Arisaema cum Bile, in LPS-induced PMA-differentiated THP-1 cells. Immunopharmacol. Immunotoxicol. 34: 379-84 (2012) https://doi.org/10.3109/08923973.2011.608683
  22. Kim JA, Ahn BN, Kong CS, Kim SK. Anti-inflammatory action of sulfated glucosamine on cytokine regulation in LPS-activated PMA-differentiated THP-1 macrophages. Inflamm Res. 60: 1131-1138 (2011) https://doi.org/10.1007/s00011-011-0377-7
  23. Han EH, Kim JY, Kim HG, Chun HK, Chung YC, Jeong HG. Inhibitory effect of 3-caffeoyl-4-dicaffeoylquinic acid from Salicornia herbacea against phorbol ester-induced cyclooxygenase-2 expression in macrophages. Chem. Biol. Interact. 183: 397-404 (2010) https://doi.org/10.1016/j.cbi.2009.11.015
  24. Fiocchi C. Intestinal inflammation: a complex interplay of immune and nonimmune cell interactions. Am. J. Physiol.-Gastr. L. 273: 769-775 (1997)
  25. Wu H, Xu JB, He YL, Peng JJ, Zhang XZ, Chen CQ, Li W, Cai SR. Tumor-associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer. J. Surg. Oncol. 106: 462-468 (2012) https://doi.org/10.1002/jso.23110
  26. Wang MT, Honn KV, Nie D. Cyclooxygenases, prostanoids, and tumor progression. Cancer Metast. Rev. 26: 525-534 (2007) https://doi.org/10.1007/s10555-007-9096-5
  27. Ng EK, Panesar N, Longo WE, Shapiro MJ, Kaminski DL, Tolman KC, Mazuski JE. Human intestinal epithelial and smooth muscle cells are potent producers of IL-6. Mediators Inflamm. 12: 3-8 (2003) https://doi.org/10.1080/0962935031000096917
  28. Liu W, Reinmuth N, Stoeltzing O, Parikh AA, Tellez C, Williams S, Jung YD, Fan F, Takeda A, Akagi M, Bar-Eli M, Gallick GE, Ellis LM. Cyclooxygenase-2 is up-regulated by interleukin-1 beta in human colorectal cancer cells via multiple signaling pathways. Cancer Res. 63: 3632-3636 (2003)

Cited by

  1. Antioxidant activities, production of reactive oxygen species, and cytotoxic properties of fractions from aerial parts of glasswort (Salicornia herbacea L.) vol.48, pp.6, 2016, https://doi.org/10.9721/KJFST.2016.48.6.574