DOI QR코드

DOI QR Code

Thermal conductivity analysis of Al/graphite composite fabricated by a mechanical alloying

기계적 합금법에 의한 Al/graphite 복합체 제조 및 열전도도 특성 분석

  • Lee, Jung-Il (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Kim, Tae Wan (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Yoon, Yo Han (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Cho, Hyun Su (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Ryu, Jeong Ho (Department of Materials Science and Engineering, Korea National University of Transportation)
  • 이정일 (한국교통대학교 신소재공학과) ;
  • 김태완 (한국교통대학교 신소재공학과) ;
  • 윤요한 (한국교통대학교 신소재공학과) ;
  • 조현수 (한국교통대학교 신소재공학과) ;
  • 류정호 (한국교통대학교 신소재공학과)
  • Received : 2016.07.28
  • Accepted : 2016.08.12
  • Published : 2016.08.31

Abstract

Thermal conductivity is a very important factor for applicability and reliability in electrical devices. In this study, Al/graphite composite is fabricated by a mechanical alloying and heat-treatment and its physical properties are characterized. The XRD peak intensity of the $Al_4C_3$ ceramic phase observed in the heat-treated Al/graphite composite increased with heat-treatment temperature and time. The thermal conductivity of the heat-treated Al/graphite composite sample was very lower than that of the pure Al sample, and increased with heat-treatment temperature and time.

전자소자내의 방열특성은 제품의 신뢰성을 결정하는 우주 중요한 인자중의 하나이다. 본 연구에서는 Al과 graphite 분말을 기계적 합금법(mechanical alloying)을 이용하여 Al/graphite 복합체 분말을 합성하고, 합성된 분말을 열처리한 시편에 대한 물리적 특성을 분석하였다. 열처리가 완료된 Al/graphite 샘플에서 열처리 온도 및 시간이 증가할수록 $Al_4C_3$ 이차상의 비율이 증가함을 확인하였다. 또한 Al/graphite 샘플의 열전도도는 순수 Al 분말 샘플에 비해 현저히 낮았으나, 열처리 온도와 시간에 비례하여 증가하는 것을 확인하였다.

Keywords

References

  1. P. Sharma, S. Sharma and D. Khanduja, "A study on microstructure of aluminum matrix composites", J. Asian Ceram. Soc. 3 (2015) 240. https://doi.org/10.1016/j.jascer.2015.04.001
  2. A.E.M. Warner, J.A.E. Bell and T.F. Stephenson, "Opportunities for new graphitic aluminum metal composite", Mater. Sci. Technol. 14 (1998) 843. https://doi.org/10.1179/026708398790613407
  3. S. Kumar and R.N. Singh, "Three-dimensional finite element modeling of residual thermal stresses in graphite/ aluminum composites", Acta Mater. Metall. 43 (1995) 2417. https://doi.org/10.1016/0956-7151(94)00449-8
  4. S.M. Hwang, J.B. Lee, S.H. Kim and J.H. Ryu, "A review on inorganic phosphor materials for white LEDs", J. Kor. Cryst. Growth & Cryst. Technol. 22 (2012) 233. https://doi.org/10.6111/JKCGCT.2012.22.5.233
  5. S. Qu, L. Geng and J. Han, "SiCp/Al composites fabricated by modified squeeze casting technique", J. Mater. Sci. Technol. 23 (2007) 641. https://doi.org/10.1179/174328407X179665
  6. T. Etter, M. Papakyriacou, P. Schulzf and P.J. Uggowitzer, "Physical properties of graphite/aluminum composites produced by gas pressure infiltration method", Carbon 41 (2003) 1017. https://doi.org/10.1016/S0008-6223(02)00448-7
  7. S.N. Alam and L. Kumar, "Mechanical properties of aluminum based metal matrix composites reinforced with graphite nanoplatelets", Mater. Sci. & Eng. A 667 (2016) 16. https://doi.org/10.1016/j.msea.2016.04.054
  8. C. Suryanarayana, "Mechanical alloying and milling", Prog. Mater. Sci. 46 (2001) 1. https://doi.org/10.1016/S0079-6425(99)00010-9
  9. Y. Zhou and Z.Q. Li, "Structural characterization of a mechanical allyed Al-C mixture", J. Alloys Compd. 414 (2006) 107. https://doi.org/10.1016/j.jallcom.2005.07.034
  10. C. Qiu and R. Metselaar, "Solubility of carbon in liquid Al and stability of $Al_4C_3$", J. Alloys Compd. 16 (1994) 55.