DOI QR코드

DOI QR Code

기계적 합금법에 의한 Al/graphite 복합체 제조 및 열전도도 특성 분석

Thermal conductivity analysis of Al/graphite composite fabricated by a mechanical alloying

  • 이정일 (한국교통대학교 신소재공학과) ;
  • 김태완 (한국교통대학교 신소재공학과) ;
  • 윤요한 (한국교통대학교 신소재공학과) ;
  • 조현수 (한국교통대학교 신소재공학과) ;
  • 류정호 (한국교통대학교 신소재공학과)
  • Lee, Jung-Il (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Kim, Tae Wan (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Yoon, Yo Han (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Cho, Hyun Su (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Ryu, Jeong Ho (Department of Materials Science and Engineering, Korea National University of Transportation)
  • 투고 : 2016.07.28
  • 심사 : 2016.08.12
  • 발행 : 2016.08.31

초록

전자소자내의 방열특성은 제품의 신뢰성을 결정하는 우주 중요한 인자중의 하나이다. 본 연구에서는 Al과 graphite 분말을 기계적 합금법(mechanical alloying)을 이용하여 Al/graphite 복합체 분말을 합성하고, 합성된 분말을 열처리한 시편에 대한 물리적 특성을 분석하였다. 열처리가 완료된 Al/graphite 샘플에서 열처리 온도 및 시간이 증가할수록 $Al_4C_3$ 이차상의 비율이 증가함을 확인하였다. 또한 Al/graphite 샘플의 열전도도는 순수 Al 분말 샘플에 비해 현저히 낮았으나, 열처리 온도와 시간에 비례하여 증가하는 것을 확인하였다.

Thermal conductivity is a very important factor for applicability and reliability in electrical devices. In this study, Al/graphite composite is fabricated by a mechanical alloying and heat-treatment and its physical properties are characterized. The XRD peak intensity of the $Al_4C_3$ ceramic phase observed in the heat-treated Al/graphite composite increased with heat-treatment temperature and time. The thermal conductivity of the heat-treated Al/graphite composite sample was very lower than that of the pure Al sample, and increased with heat-treatment temperature and time.

키워드

참고문헌

  1. P. Sharma, S. Sharma and D. Khanduja, "A study on microstructure of aluminum matrix composites", J. Asian Ceram. Soc. 3 (2015) 240. https://doi.org/10.1016/j.jascer.2015.04.001
  2. A.E.M. Warner, J.A.E. Bell and T.F. Stephenson, "Opportunities for new graphitic aluminum metal composite", Mater. Sci. Technol. 14 (1998) 843. https://doi.org/10.1179/026708398790613407
  3. S. Kumar and R.N. Singh, "Three-dimensional finite element modeling of residual thermal stresses in graphite/ aluminum composites", Acta Mater. Metall. 43 (1995) 2417. https://doi.org/10.1016/0956-7151(94)00449-8
  4. S.M. Hwang, J.B. Lee, S.H. Kim and J.H. Ryu, "A review on inorganic phosphor materials for white LEDs", J. Kor. Cryst. Growth & Cryst. Technol. 22 (2012) 233. https://doi.org/10.6111/JKCGCT.2012.22.5.233
  5. S. Qu, L. Geng and J. Han, "SiCp/Al composites fabricated by modified squeeze casting technique", J. Mater. Sci. Technol. 23 (2007) 641. https://doi.org/10.1179/174328407X179665
  6. T. Etter, M. Papakyriacou, P. Schulzf and P.J. Uggowitzer, "Physical properties of graphite/aluminum composites produced by gas pressure infiltration method", Carbon 41 (2003) 1017. https://doi.org/10.1016/S0008-6223(02)00448-7
  7. S.N. Alam and L. Kumar, "Mechanical properties of aluminum based metal matrix composites reinforced with graphite nanoplatelets", Mater. Sci. & Eng. A 667 (2016) 16. https://doi.org/10.1016/j.msea.2016.04.054
  8. C. Suryanarayana, "Mechanical alloying and milling", Prog. Mater. Sci. 46 (2001) 1. https://doi.org/10.1016/S0079-6425(99)00010-9
  9. Y. Zhou and Z.Q. Li, "Structural characterization of a mechanical allyed Al-C mixture", J. Alloys Compd. 414 (2006) 107. https://doi.org/10.1016/j.jallcom.2005.07.034
  10. C. Qiu and R. Metselaar, "Solubility of carbon in liquid Al and stability of $Al_4C_3$", J. Alloys Compd. 16 (1994) 55.