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1. INTRODUCTION

Assessing the hippocampus is an important step

for the early diagnosis of mild cognitive impair-

ment (MCI), Alzheimer’s disease (AD), and other

brain disorders. The best way is to detect such a

disorder early, follow it, and if still possible, pre-

vent disease progression. Hopefully, this will re-

duce the number of patients with brain disorders.

In this respect, the accurate, reliable segmentation

of the hippocampus could play a major role in over-

coming such diseases, because an early symptom

of these diseases is the deformation of the shape

of the hippocampus, which can be detected.

The hippocampus belongs to the limbic system

and is a major component of the brain in humans.
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It is the most electrically excitable part of the brain,

where new neurons continue to be created

throughout human life. Consolidation of in-

formation from short-term memory to long-term

memory and spatial navigation occur in the

hippocampus. Early symptoms of AD include dam-

age to the hippocampus, memory loss, and dis-

orientation. Difficulties in forming new memories

are a result of severe damage to the hippocampus

in both hemispheres. Moreover, if both the hippo-

campus and the parahippocampus are damaged,

complete amnesia can result [1]. The shape of the

hippocampus depends on age but can also be

changed by traumatic stress. Not all elderly people

have a smaller hippocampus and bad memories but

those who do tend to perform less well on memory

tasks and some aerobic tasks. In addition, younger

people show more activation in the hippocampus

than older people.

2. MATERIALS AND METHODS

2.1 Image Acquisition

In this work, the images used (256 × 256) were

captured with a 1.5-T General Electric (GE)

Medical System MRI device at Haeundae Paik

Hospital, Korea. From this, we obtained 33 slides

from one normal patient for hippocampal segmen-

tation. The segmentation program used Matlab.

The binary ground truth was obtained with manual

segmentation.

2.2 Related Works

The first level set method was proposed by

Osher and Sethian in 1987 [2]. They used it to cap-

ture dynamic interfaces and shapes by a contour

as the zero level set, called a level set function

(LSF). The LSF moves by evolution until it reach-

es its expected boundary. In the active contour

model, there have been many applications to image

segmentation [3-5]. These studies formulated the

dynamic parametric contour C(s, t): [0, 1] × [0, ∞)

→ 2, which has a curve evolution as follows:

(1)

with a spatial parameter s in [0, 1] that parameter-

izes points in the contour. F is the speed function

and N is the inward normal vector to the curve

C. N can be formulated as

(2)

The curve evolution in (1) can be converted into

a level set by adding the dynamic contour C(s,t)

as the zero level set of a time-dependent ϕ(x,y,t).
This ϕ(x,y,t), called the LSF, has negative values
inside the zero level contour and the opposite, pos-

itive values at the outside [6, 7]. The formula in

(2) is a conversion from the curve evolution to a

partial differential equation (PDE):

(3)

It is also called an implicit active contour or a

geometric active contour (GAC) model, which is

given as an LSF.

The LSF also has its drawbacks, such as irregu-

larities during evolution, and it introduces numer-

ical error and can destabilize level set evolution [8,

9]. Hence, reinitialization is introduced by perform-

ing a termination of the evolution periodically and

reshaping the degraded LSF as a signed distance

function [10–12].

One adverse effect of reinitialization is that the

LSF can incorrectly move the zero level set away

from the expected position; thus, reinitialization

should be avoided as much as possible [13]. It is

usually applied in an ad hoc manner because there

is currently no consensus on when or how best to

apply it [14]. Reinitialization can be expressed as

follows:

(4)

The steady-state solution of this equation is a

signed distance function, where sign (ϕ) is the sign
function.
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Gomes and Faugeras [14] used three PDEs to

avoid reinitialization. The first PDE’s role is to re-

strict the LSF to a signed distance function, and

the second and third PDEs describe the motion of

the zero-level contour. However, they still had is-

sues with destabilization of the level set evolution

and destruction of the signed distance property,

and had to introduce a separate reinitialization

phase. Another study proposed a method for avoid-

ing separate reinitialization of the GAC [15].

We chose the level set as the method for this

segmentation for several reasons. First, numerical

computation is performed on a fixed Cartesian grid

without point parameterization on a contour, as in

the parametric active contour model (ACM)

[16-19]. As a result, level set methods have been

applied widely in many scientific and engineering

areas [20-24]. Second, the level set can handle

topological changes that represent contours of a

complex topology that cannot be supported by

parametric ACM, and can handle shape corners

and cusps in a propagating solution as well as

three-dimensional effects [25-26]. Third, level set

methods are widely known as versatile, robust, ac-

curate, and efficient techniques for solving many

problems. A previous study proposed a variant of

the LSF to maintain signed distance properties that

did not need reinitialization; however, the method

still had unwanted effects on the numerical accu-

racy under several conditions [27].

2.3 Intensity Inhomogeneity and Bias Correction

Intensity inhomogeneity is a smooth change in

intensity inside originally homogeneous regions. It

should be removed or corrected because it will de-

grade the segmentation ability of an algorithm.

Almost all brain images captured using MRI de-

vices have intensity inhomogeneities because of

several factors. There are now many intensity in-

homogeneity correction methods [28].

The histogram-based method is a high-fre-

quency method that does not use any knowledge

about an image or uses only information present

in an image, without making assumptions on spa-

tial and intensity distribution; it is fully automatic

and general in that it needs no initialization or prior

information. In this work, we use intensity in-

homogeneity as an attribute of a component of an

image, formulated as follows:

I = bJ + n (5)

where I is an observed image, J is the true image,

b is the intensity inhomogeneity or bias field that

has a low variance, and n is additive noise (i.e.,

zero mean Gaussian noise) [29].

The bias field b can be approximated by a con-

stant in the neighborhood of each point in the im-

age continuous domain I:Ω→R. The true image J

takes N distinct constant values C1, …, CN in dis-

joint regions Ω1, …, ΩN, where {Ωi}
N
i=1, { Ci}

N
i=1

and bias field b. It is assumed that b slowly

changes.

2.4 Contrast Enhancement

There are several ways to enhance the contrast

in MR images, such as histogram equalization

(HE), brightness biHE (BBHE), and contrast-lim-

ited adaptive HE (CAHE). We used CAHE in pre-

processing to readily segment the hippocampus

region.

CAHE prevents the tendency to over-amplify

noise in homogeneous regions, as adaptive HE

does, by limiting its contrast enhancement. Before

computing the cumulative distribution function

(CDF), CAHE clips the histogram at a predefined

value to limit its amplification as well as the slope

of the CDF and function of the transformation. The

sizes of neighborhood regions and histogram nor-

malization influence the clip limit. The resulting

amplification limit is usually between 3 and 4. The

excess over the clip limit is redistributed among

all histogram bins. Some bins are redistributed

over the clip limit repeatedly, recursively, to an ef-

fective clip limit bigger than the prescribed limit,
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but the exact value affected by the image and also

the excess are negligible. The biggest disadvant-

age of CAHE is its high computational cost, be-

cause of the need to compute different neighbor-

hood histograms for each pixel in an image. It uses

interpolation to improve this, to minimize the cost

without degrading result quality.

A modeled digital image histogram has intensity

levels [0, L-1] and can be formulated as follows:

h(rk) = nk (6)

where rk is the k
th intensity value and nk is the

number of pixels that have intensity rk, and has

a discrete function.

The normalized histogram can be formulated as:

(7)

where Pr(rk) is an estimated occurrence probability

of intensity level rk. The new distribution of HE

can be formulated as:

(8)

The first step is to separate the region into sev-

eral non-overlapping, almost equal, regions and to

calculate the histogram of each region. Then a clip

limit for clipping the histograms is obtained from

the limit for contrast enhancement to redistribute

the histograms in such a way that each histogram

height does not exceed the clip limit. The clip limit

(β) can be calculated as:

(9)

where α is the clip factor, and the resulting con-

trast-limited histogram CDFs are obtained for

mapping the grayscale. Furthermore, the results

from the mapping of the four nearest regions can

be combined linearly, as explained in a previous

study [30].

2.5 Contrast-Enhanced Bias-Corrected Distance- 

Regularized Level Set

Chunming et al. [6] studied DLS and proposed

a variant with a distance-regularized term and an

external energy term that drives the motion of the

curve towards the expected position. They also

proposed a double-well potential for the distance

regularization term, a potential function that forces

the gradient magnitude of the LSF to its minimum

points by maintaining the shape of the function’s

curve. Then level set evolution not only maintains

its regularity by the double-well potential as a

penalty term but also its forward-and-backward

(FAB) diffusion. This FAB diffusion is derived

from the distance regularization term. In this way,

reinitialization can be avoided. Next, the DLS is

applied in a narrowband domain, using an edge-

based active contour model to perform the image

segmentation.

The difference between our proposed method

and the existing DLS is that we use a Heaviside

step function, which is 1 when φ ≥ 0 and 0 when

φ < 0.

The energy formulation with distance regulari-

zation can be written as

(10)

where ϕ: is an LSF in a domain

is a level set regularization term, µ is a constant

greater than 0, and is external energy.

Next, can be formulated as:

(11)

Let p be a potential (energy density) function,

and p: [0, ∞) → . When the zero level set LSF

ϕ is at the expected position (i.e., the boundary ob-
ject to be segmented), then the external energy

reaches its minimum.

Let |∇ϕ | be zero if p(s) = s2. To maintain the
computational accuracy of curve evolution, a level

set regularization term should be imposed where

p(s) has a minimum point, s = 1 (it may have more

than s = 1 as minimum points), so that LSF will

be smooth, p(ϕ) is minimized, and the signed dis-
tance property ∇ϕ=1 is maintained.
Then potential p can be expressed as
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(12)

The energy functional P (ϕ ) is a penalty term
that can maintain the signed distance property in

the entire domain, which can be expressed as

(13)

To maintain the LSF profile, potential function

p(s) should have minimum points at s = 1 and s

= 0, the so-called double-well potential. Next, to

achieve the minimum energy is to find the steady-

state solution of this gradient flow equation, which

is an evolution equation of time-dependent func-

tion ϕ (x, t) with a spatial variable x in domain Ω 

and temporal variable t ≥ 0, expressed as:

(14)

The evolution starts with an initial function

. The evolution of the time-dependent

function ϕ (x, t) equals , which is why it

is called a gradient descent flow or steepest de-

scent flow.

From (11), we can get the functional as

Gateaux derivatives:

(15)

where

and (16)

(17)

Equation (17) is derived from (10) and the gra-

dient flow of energy ε(ϕ ) , defined as:
(18)

Next, with equation (15), we can obtain:

(19)

Equation (19) is called the DLS because of its

ability to maintain the signed distance property of

the distance regularization of the LSF. DLS does

not need reinitialization because of the distance

regularization. If distance regularization in DLS is

seen from the gradient flow of energy , then

(20)

Equation (20) can be defined in a diffusion equa-

tion as:

(21)

where D is a diffusion rate, defined as D=μdp(|∇ϕ |)
is a diffusion rate whose value can be positive or

negative. If it is positive, the diffusion goes for-

ward, so |∇ϕ | will decrease. If it is negative, the
diffusion goes backwards, so |∇ϕ | will increase.
This diffusion is called a forward and backward

mechanism. The |∇ϕ | decreases or increases to
make it near its minimum points of the potential

function p(s), while preserving the shape of the

curve.

Equation (19) can also be expressed as:

(22)

The div(∇ϕ/|∇ϕ |) term computes the mean cur-
vature of the LSF.

The sign of dp(s)=1-(1/s) indicates the FAB dif-

fusion term. When |∇ϕ | > 1, while the diffusion
rate μdp(|∇ϕ |) is positive, the diffusion equation
in (19) is going forward and decreases |∇ϕ |. When
|∇ϕ | < 1, while the diffusion rate μdp(|∇ϕ |) is neg-
ative, the diffusion equation is going backward and

increases |∇ϕ |.
FAB diffusion with potential p = p1 keeps |∇ϕ |

equals to 1 to preserve the signed distance

property. This FAB diffusion has an unbounded

diffusion rate, which goes to infinity as |∇ϕ | ap-
proaches 0. This disadvantage can be handled by

a double-well potential, p = p2, where the μdp(|∇ϕ |)
is bounded by a constant.

Several works have already proposed improve-

ments to the DLS model. In one such study, an iso-

tropic nonlinear diffusion filter was proposed by

adopting a regularized P-M filter to remove image
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noise while preserving an edge information equa-

tion filter. It used the image gradient modulus

while filtering the noise, and at the same time, also

preserved the edge detection. It used a Gaussian

filter for smoothing, then applied search filtering

of the image’s gradient modulus and used a regu-

larized P-M equation to obtain smoothed image re-

sults of isotropic nonlinear filtering. They also pro-

posed a new adaptive function u’(x,y):

(23)

If the target object for segmentation is inside the

evolution curve, Dint > Dext, where Dint is the aver-

age of the image’s gradient modulus of the inward

region of the curve and Dext is the average image’s

gradient modulus or the outward region of the

curve, and the result is u’(x,y) = u(x,y). This makes

the normal vector take a negative value and the

evolution moves inside the curve. It also applies

in the opposite direction if Dint < Dext, where u’(x,y)

= -u(x,y) and the normal vector takes a positive

value and the evolution moves outside the curve

towards the expected position.

More DLS enhancement was performed by W.

Weifeng, W. Yuan and H. Qian [31]. They im-

proved the penalty term of DLS, which still had

an unwanted effect, using three potential wells as

a diffusion rate for the penalty term and also differ-

ent narrowband steps to overcome it.

The procedure to segment the hippocampus is

described in Fig. 1.

3. RESULTS AND DISCUSSION

3.1 Results of Segmentation and Visualization

Fig. 2 shows a brain MR images used in our

experiments; the slice name is SUB40053.bmp. For

simplicity, the MR images are cropped at the region

of the hippocampus. After the bias field is esti-

mated, it is corrected and its contrast is enhanced.

The image slice is segmented and the segmenta-

tion final contour result is used to make a binary

image of each slice.

The slice is cropped at the hippocampus to ease

the segmentation process. Then initial contours are

placed on the body of the hippocampus, as shown

in Fig. 3. The initial contour involves a step-by-

step process of going outside each iteration to the

edge of hippocampus area until it reaches a final

contour in certain iterations. The final contour from

the final iteration is shown in Fig. 3d–f. We can

see that a better segmentation result is achieved

with CBDLS. BDLS segmented the hippocampus

better than DLS, and CBDLS segmented the hip-

pocampus better than BDLS.

After obtaining the segmentation result from the

final contour of all three methods, we return the

Fig. 1. Pipeline of the CBDLS procedure.

(a) (b)

Fig. 2. (a) Original MR image and (b)Cropped region of 

interest.
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cropped images to the original size. Then we make

the final contours as binary images for simplicity

in Fig. 4.

3.2 Validation and Discussion

In this experiment, we used the Jaccard sim-

ilarity index to compare our proposed CBDLS pro-

cedure to DLS and BDLS. Jaccard similarity can

be formulated as:

(24)

It is the size of the intersection divided by the

size of the union of finite sample sets. In this ex-

periment, A is a ground truth and B is the seg-

mented image under consideration. Table 1 com-

pares the Jaccard similarity index among the

CBDLS, BDLS, and DLS.

If A and B are empty, then J(A, B) = 1

0≤ J(A, B)≤ 1 (25)

The Jaccard distance can be defined as dissim-

ilarity: 1 minus Jaccard similarity or the difference

in the sizes of the union and intersection divided

by the union of two sets [32-33].

(26)

From Table 1 we can see that the sum and the

mean of CBDLS are higher than for BDLS and

DLS. Higher is better and ideally the value ap-

proaches 1. If the Jaccard similarity achieves 1,

then the binary segmentation result is equal to the

binary ground truth. Thus, we can conclude that

CBDLS is more accurate than BDLS, and that

BDLS is more accurate than DLS in the hippo-

(a) (b)

(c) (d)

(e) (f)

Fig. 3. (a) Initial contour of the level set, (b) Initial contour of the bias-corrected level set, (c) Initial contour of 

the bias-corrected and CAHE level set, (d) Final contour of the level set hippocampus segmentation, (e) 

Final contour of bias-corrected level set hippocampus segmentation, and (f) Final contour of bias-corrected 

and CAHE level set hippocampus segmentation.
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campus segmentation of MR images.

From Table 1 and Fig. 5, we can see that our

method is the best method for segmenting the hip-

pocampus, with the highest accuracy. The addition

of bias correction and contrast enhancement before

segmentation using a modified level set can be a

considerable advance to improve the image quality

for ease of the segmentation process. If the seg-

mentation process is easier, then costs can be

lower.

The easier the segmentation, the more accurate

the segmentation result. A drawback of our pro-

posed method is that preprocessing the MR images

until the final result as binary images is more time

consuming than other methods. This is because

two additional steps are needed before segmenta-

tion.

From Table 1 and Fig. 5, we can see that the

sum and mean of CBDLS are higher than in BDLS

and DLS. There are some segmentation results

that are better than CBDLS in hippocampus seg-

mentation (as can be seen in Fig. 5). This is be-

cause the image, after contrast enhancement and

bias correction, makes the level set contour diffi-

cult to move inside the boundary of the hippo-

campus. The reason is that the intensity of each

(a) (b)

(c) (d)

Fig. 4. (a) Binary ground truth, (b) Binary image of level 

set hippocampus segmentation, (c) Binary image 

of bias-corrected level set hippocampus seg-

mentation, and (d) Binary image of bias-cor-

rected and CAHE level set hippocampus seg-

mentation.

Table 1. The Jaccard Similarity Index of DLS, BDLS, and 

CBDLS in hippocampus segmentation

No. Image Index No. DLS BDLS CBDLS

1 SUB40051 0.2306 0.4273 0.1461

2 SUB40052 0.1412 0.0309 0.1808

3 SUB40053 0.1241 0.2825 0.3288

4 SUB40054 0.1697 0.1457 0.1117

5 SUB40055 0.1146 0.1402 0.6650

6 SUB40056 0.3397 0.1350 0.2167

7 SUB40057 0.0570 0.4097 0.1949

8 SUB40058 0.1859 0.3455 0.5972

9 SUB40059 0.1935 0.4470 0.5879

10 SUB40060 0.2959 0.0915 0.4416

11 SUB40061 0.2309 0.1158 0.2166

12 SUB40062 0.0881 0.2600 0.3934

13 SUB40063 0.2896 0.1201 0.0808

14 SUB40064 0.0771 0.2520 0.2222

15 SUB40065 0.0740 0.2381 0.2049

16 SUB40066 0.0580 0.0564 0.2740

17 SUB40109 0.0758 0.0595 0.2661

18 SUB40110 0.0879 0.0681 0.1135

19 SUB40111 0.4663 0.0289 0.1851

20 SUB40112 0.0747 0.0535 0.1299

21 SUB40113 0.0460 0.1145 0.7200

22 SUB40114 0.0713 0.3458 0.3190

23 SUB40115 0.2045 0.3333 0.2651

24 SUB40116 0.0606 0.3135 0.6438

25 SUB40117 0.1845 0.2646 0.3808

26 SUB40118 0.4399 0.2868 0.4061

27 SUB40119 0.1335 0.3454 0.5496

28 SUB40120 0.1646 0.4766 0.3231

29 SUB40121 0.2034 0.6301 0.3934

30 SUB40122 0.4048 0.5200 0.2343

31 SUB40123 0.3196 0.2408 0.4051

32 SUB40124 0.0945 0.3107 0.2268

33 SUB40125 0.3584 0.2247 0.0459

Sum (∑) 6.0602 8.1145 10.4702

Mean () 0.1836 0.2459 0.3173
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pixel inside the hippocampus has more contrast

and more heterogeneity.

Consequently, there is a need to set the initial

contour more in the beginning than with the other

methods. Another drawback is that it takes more

time and iterations to shape the hippocampus until

reaching the ‘correct’ boundary. However, overall,

the sum and mean of the Jaccard similarity index

for 33 image slides of hippocampus segmentation

show the best segmentation results with CBDLS,

followed by BDLS and DLS. This is because in our

method the contour is difficult to move to the back-

ground region, making it difficult to over-segment,

and the opposite of the DLS method, which often

over-segments the hippocampus area. BDLS is

better than DLS because it removes the intensity

inhomogeneity that makes segmentation of the

hippocampus difficult to achieve. Thus, we can

conclude that CBDLS is more accurate than BDLS,

and BDLS is more accurate than DLS in segment-

ing hippocampus MR images.

4. CONCLUSION

We propose the use of contrast enhancement,

bias correction, and a level set method to handle

hippocampus segmentation, which suffers from in-

tensity inhomogeneity and the nature of hippo-

campus, where the edges have quite similar in-

tensities to the neighboring pixels. Our experi-

mental results indicate that our method outper-

forms both BDLS and DLS. The DLS method has

a tendency to over-segment the hippocampus re-

gion, and BDLS has a tendency to under-segment

it. Our proposed method meets the boundaries of

the hippocampus almost exactly. This is because

the bias correction makes the intensity inhomoge-

neity of the hippocampus more homogeneous, and

the contrast enhancement provides the edges of the

hippocampus region with more contrast versus the

background. This helps prevent moving the con-

tour beyond the real boundary of the hippocampus.

Although our method requires more time, it can

be used as an alternative to existing methods to

segment the hippocampus. In the future, we will

seek to reduce the time needed to finish the seg-

mentation of CBDLS, to make it more efficient.
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