DOI QR코드

DOI QR Code

Analysis of water quality improvement efficiency using constructed wetland in a coastal reservoir

연안 담수호 수질오염 방지를 위한 인공습지의 수질정화효율 분석

  • Hong, Jungsun (Department of Civil & Environmental Engineering, Kongju National University) ;
  • Maniquiz-Redillas, Marla C. (Department of Civil & Environmental Engineering, Kongju National University) ;
  • Ham, Jong-Hwa (Rural Research Institute, Korea Rural Community Corporation) ;
  • Kim, Lee-Hyung (Department of Civil & Environmental Engineering, Kongju National University)
  • 홍정선 (공주대학교 건설환경공학과) ;
  • 말라 (공주대학교 건설환경공학과) ;
  • 함종화 (한국농어촌공사 농어촌연구원) ;
  • 김이형 (공주대학교 건설환경공학과)
  • Received : 2016.07.28
  • Accepted : 2016.08.19
  • Published : 2016.08.31

Abstract

Diverse and comprehensive countermeasures were established to prevent water pollution in coastal areas such as constructed wetlands(CW).This study was conducted to assess the water quality improvement through CW constructed along the shoreline of Hwaseong coastal reservoir. The CW is located in Hwaseong-si, Gyeonggi-do and consisted of a forebay and a wetland. The CW was monitored twice during rainy days and 10 times during dry days. The monitoring results indicated that in and out flowrates were highly correlated with COD and TN loads. COD, TN and TP concentrations in the forebay was lower during dry days than rainy days. However, concentration and mass removal efficiencies of COD, TN and TP were greater during rainy days. In addition, the volume flowing into the CW was less compared to the outflow during rainy days indicating that the CW efficiently reduced the runoff volume. The overall pollutant removal efficiency of the CW were at least 50% for TSS, 20 to 35% for TP, and 26 to 94% for TN. The data gathered may be used to improve the pollutant removal efficiency of the system in the future.

담수호 수질오염방지를 위해 유역종합대책과 호내 대책으로 수질오염방지 종합대책 수립 및 인공습지를 적용하였다. 본 연구는 화성호 수질 개선 및 자연생태계 보호를 위한 호소 수변지역 인공습지 조성에 따른 수질정화 효율과 인공습지 효율 제고를 위한 설계 고려사항을 도출하기 위하여 수행하였다. 연구대상 시설은 경기도 화성시에 위치한 인공습지 시스템으로forebay와 wetland로 구성되어 있다. 모니터링은 강우시 2회, 건기시 10회 수행하였으며, 분석 결과 인공습지 유입 및 유출의 유속은 COD와 TN의 부하량과 높은 상관성을 가지는 것으로 분석되었다. 인공습지의 forebay 지점에서 건기시에는 COD, TN 및 TP의 농도가 감소하는 것으로 조사되었으며, 비 강우시에 비해 강우시에 저감효율이 상대적으로 높은 것으로 나타났다. 또한, 강우시에 인공습지에 유입되는 양에 비해 유출되는 양이 상당히 작은 것으로 강우유출수 저감 효과에 뛰어난 것으로 분석되었다. 건기시 및 강우시의 인공습지의 전반적인 효율의 경우 TSS는 50% 이상, TP는 20~35%으로 조사되었으며, TN은 26~94%로써 다른 오염물질에 비하여 높은 저감효율을 나타냈다. 이러한 모니터링 자료는 향후 담수호 수질정화효율 증대를 위한 인공습지 설계 시 중요한 자료를 제공할 것으로 판단된다.

Keywords

References

  1. Changguk Kang, Marla C. Maniquiz, Younggyu Son and Lee-Hyung Kim (2010) Analysis of water purification in the FWS wetland for Agreculture Area, J. of Wetlands Research, 12(3), pp. 39-47.
  2. Comin, F. A., Romero, J. A., Astorga, V. and Garcia, C. (1997) Nitrogen removal and cycling in restored wetlands used as filters of nutrients for agricultural run-off, Water Science and Technology, 33, pp. 225-261.
  3. F. K. F. Geronimo, M. C. Maniquiz-Redillas, J. A. S. Tobio and L. H. Kim (2014) Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter, Wat. Sci. & Tech. 69(12), pp. 2460-2467. https://doi.org/10.2166/wst.2014.150
  4. Hammer, D. A. (1992) Designing constructed wetlands systems to treat agricultural non-point source pollution. Ecological Engineering, 1, pp. 49-82. https://doi.org/10.1016/0925-8574(92)90025-W
  5. Jaeho Jang, Hyeongsik Kang and Kwangwook Jung (2012) Watershed modeling Research for receiving water quality management in hwaseong reservoir watershed, J. of Korean Society on Water Environment, 28(6), pp. 819-832.
  6. Jiyeon Choi, Marla C. Maniquiz-Redillas, Soyoung Lee, Jean Margaret R. Mercado, and Lee-Hyung Kim (2013) Application of a gravel wetland system for treatment of parking lot runoff, Desalination and Water Treatment, 51(19-21), pp. 4129-4137. https://doi.org/10.1080/19443994.2013.781109
  7. Jonghwa Ham and Taeho Lee (2014) Temporal operation result of large scale constructed wetland for hwaseong reservoir water pollution protection, 2014 Korea wetlands society conference on wetlands.
  8. J. Vymazal (2005) Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment, Ecological Engineering, 25(5), pp. 78-490.
  9. Kovacic, D. A., Gentry, M. B. and Lowell, E. (2000) Effectiveness of constructed wetlands in reducing nitrogen and phosphorus export from agricultural tile drainage. J. of Environmental Quality, 29, pp. 1262-1274.
  10. M. C. Maniquiz, SY Lee, JY Choi, SM Jeong and L.H. Kim (2012) Treatment performance of a constructed wetland during storm and non-storm events in Korea, Water Science and Technology, 65(1), pp. 119-126. https://doi.org/10.2166/wst.2011.843
  11. N.E. Driver and B.M. Troutman (1989) Regression models for estimating urban storm-runoff quality and quantity in the United States, J. of Hydrol, 109, pp. 221-236. https://doi.org/10.1016/0022-1694(89)90017-6
  12. Scholz, M. and Lee, B.W. (2005) Constructed wetlands: a review. International J. of Environmental Studies, 62 (4), pp. 421- 447. https://doi.org/10.1080/00207230500119783
  13. Song, M. Y., Le, G. Y. and Baek, K. O (2009) Preliminary Feasibility Study on the Desalination of Hwaseong & Tando reclaimed reservoirs, Gyeonggi Research Institute.
  14. S. Y. Lee, M. C. Maniquiz, J. Y. Choi, S. M. Jeong and L. H. Kim (2013). Seasonal nutrient uptake of plant biomass in a constructed wetland treating piggery wastewater effluent, Water Science & Technology, 67(6), pp. 1317-1323. https://doi.org/10.2166/wst.2013.002
  15. Vymazal, J., Brix, H., Cooper, P., Haberl, R., Perfler, R. and Laber, J. (1998) Removal Mechanisms and Types of Constructed Wetlands, Constructed Wetlands for wastewater treatment in Europe, Backhuys Publishers, Leiden, The Netherlands.
  16. W.J. Walden (1999) Nonpoint Source Pollutant Export Estimation from Urban Catchments, Faculty of Engineering, University of Queensland, Brisbane.
  17. Yi Yuan, Ken Hall and Carolyn Oldham (2001) A preliminary model for predicting heavy metal contaminant loading from an urban catchment, Science of the Total Environment, 266 (1-3), pp. 299-307. https://doi.org/10.1016/S0048-9697(00)00728-2

Cited by

  1. Oxygen Mass Balance Analysis in an Intermittently Aerated Wetland Receiving Stormwater from Livestock Farms vol.18, pp.4, 2016, https://doi.org/10.17663/JWR.2016.18.4.488